DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Supramolecular Nanosheets Assembled from Poly(ethylene glycol)-b-poly(N-(2-phenylethyl)glycine) Diblock Copolymer Containing Crystallizable Hydrophobic Polypeptoid: Crystallization Driven Assembly Transition from Filaments to Nanosheets

Abstract

Supramolecular two-dimensional (2D) nanomaterials from block copolymers have received great interest for their unique structure and properties. In this work, we report the formation of ultrathin nanosheets from self-assembly of amphiphilic poly(ethylene glycol)-b-poly(N-(2-phenylethyl)glycine) (PEG-b-PNPE) diblock copolymers, which contain rigid crystallizable polypeptoid segment. The PEG-b-PNPE copolymers were synthesized via ring opening polymerization (ROP). The obtained PEG-b-PNPE diblock copolymers can spontaneously form highly ordered structures in PEG selective solvents such as water and methanol. The copolymers with short PNPE segment can directly form nanosheets in water, and the obtained 2D nanosheets have a uniform thickness of 4-5 nm. In contrast, the copolymers with relatively long PNPE segment can only assemble into nanosheets with the assistance of methanol. It is anticpated that the crystallization and π-π stacking of PNPE blocks play critical roles in the formation of the nanosheet as suggested by grazing incidence wide-angle X-ray scattering (GIWAXS). During the process of adding water into copolymer methanol solution, the nanosheets were observed to evolve from individual nanofibers, to parallel aligning nanofibers, and eventually to the nanosheet structures verified by transmission electron microscopy (TEM) and cryo-TEM characterizations. We demonstrated that the preassembled filament behave as a fundamental packing motif to align laterally and furthermore » fuse into platelet-like structures. The assembly structure evolution process was tracked by TEM, atomic force microscopy, and cryo-TEM techniques. The understandings of supramolecular 2D nanosheet formation offer a new opportunity to make hierarchical nanostructures from polypeptoids containing copolymers.« less

Authors:
 [1];  [1];  [1];  [2]; ORCiD logo [1]; ORCiD logo [1]
  1. Qingdao Univ. of Science and Technology (China). Key Lab. of Biobased Polymer Materials
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1580820
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Macromolecules
Additional Journal Information:
Journal Volume: 52; Journal Issue: 4; Journal ID: ISSN 0024-9297
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; polypeptoid; nanosheet; nanofiber; hierarchical self-assembly

Citation Formats

Wei, Yuhan, Tian, Jiliang, Zhang, Zekun, Zhu, Chenhui, Sun, Jing, and Li, Zhibo. Supramolecular Nanosheets Assembled from Poly(ethylene glycol)-b-poly(N-(2-phenylethyl)glycine) Diblock Copolymer Containing Crystallizable Hydrophobic Polypeptoid: Crystallization Driven Assembly Transition from Filaments to Nanosheets. United States: N. p., 2019. Web. doi:10.1021/acs.macromol.8b02230.
Wei, Yuhan, Tian, Jiliang, Zhang, Zekun, Zhu, Chenhui, Sun, Jing, & Li, Zhibo. Supramolecular Nanosheets Assembled from Poly(ethylene glycol)-b-poly(N-(2-phenylethyl)glycine) Diblock Copolymer Containing Crystallizable Hydrophobic Polypeptoid: Crystallization Driven Assembly Transition from Filaments to Nanosheets. United States. https://doi.org/10.1021/acs.macromol.8b02230
Wei, Yuhan, Tian, Jiliang, Zhang, Zekun, Zhu, Chenhui, Sun, Jing, and Li, Zhibo. Wed . "Supramolecular Nanosheets Assembled from Poly(ethylene glycol)-b-poly(N-(2-phenylethyl)glycine) Diblock Copolymer Containing Crystallizable Hydrophobic Polypeptoid: Crystallization Driven Assembly Transition from Filaments to Nanosheets". United States. https://doi.org/10.1021/acs.macromol.8b02230. https://www.osti.gov/servlets/purl/1580820.
@article{osti_1580820,
title = {Supramolecular Nanosheets Assembled from Poly(ethylene glycol)-b-poly(N-(2-phenylethyl)glycine) Diblock Copolymer Containing Crystallizable Hydrophobic Polypeptoid: Crystallization Driven Assembly Transition from Filaments to Nanosheets},
author = {Wei, Yuhan and Tian, Jiliang and Zhang, Zekun and Zhu, Chenhui and Sun, Jing and Li, Zhibo},
abstractNote = {Supramolecular two-dimensional (2D) nanomaterials from block copolymers have received great interest for their unique structure and properties. In this work, we report the formation of ultrathin nanosheets from self-assembly of amphiphilic poly(ethylene glycol)-b-poly(N-(2-phenylethyl)glycine) (PEG-b-PNPE) diblock copolymers, which contain rigid crystallizable polypeptoid segment. The PEG-b-PNPE copolymers were synthesized via ring opening polymerization (ROP). The obtained PEG-b-PNPE diblock copolymers can spontaneously form highly ordered structures in PEG selective solvents such as water and methanol. The copolymers with short PNPE segment can directly form nanosheets in water, and the obtained 2D nanosheets have a uniform thickness of 4-5 nm. In contrast, the copolymers with relatively long PNPE segment can only assemble into nanosheets with the assistance of methanol. It is anticpated that the crystallization and π-π stacking of PNPE blocks play critical roles in the formation of the nanosheet as suggested by grazing incidence wide-angle X-ray scattering (GIWAXS). During the process of adding water into copolymer methanol solution, the nanosheets were observed to evolve from individual nanofibers, to parallel aligning nanofibers, and eventually to the nanosheet structures verified by transmission electron microscopy (TEM) and cryo-TEM characterizations. We demonstrated that the preassembled filament behave as a fundamental packing motif to align laterally and further fuse into platelet-like structures. The assembly structure evolution process was tracked by TEM, atomic force microscopy, and cryo-TEM techniques. The understandings of supramolecular 2D nanosheet formation offer a new opportunity to make hierarchical nanostructures from polypeptoids containing copolymers.},
doi = {10.1021/acs.macromol.8b02230},
journal = {Macromolecules},
number = 4,
volume = 52,
place = {United States},
year = {2019},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Synthetic Covalent and Non-Covalent 2D Materials
journal, October 2015

  • Boott, Charlotte E.; Nazemi, Ali; Manners, Ian
  • Angewandte Chemie International Edition, Vol. 54, Issue 47
  • DOI: 10.1002/anie.201502009

The Organic Flatland-Recent Advances in Synthetic 2D Organic Layers
journal, March 2015

  • Cai, Song-Liang; Zhang, Wei-Guang; Zuckermann, Ronald N.
  • Advanced Materials, Vol. 27, Issue 38
  • DOI: 10.1002/adma.201500124

Two-Dimensional Soft Nanomaterials: A Fascinating World of Materials
journal, August 2014

  • Zhuang, Xiaodong; Mai, Yiyong; Wu, Dongqing
  • Advanced Materials, Vol. 27, Issue 3
  • DOI: 10.1002/adma.201401857

Self-Assembled 2D Free-Standing Janus Nanosheets with Single-Layer Thickness
journal, September 2017

  • Lin, Yiyang; Thomas, Michael R.; Gelmi, Amy
  • Journal of the American Chemical Society, Vol. 139, Issue 39
  • DOI: 10.1021/jacs.7b06591

Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene
journal, March 2013

  • Butler, Sheneve Z.; Hollen, Shawna M.; Cao, Linyou
  • ACS Nano, Vol. 7, Issue 4, p. 2898-2926
  • DOI: 10.1021/nn400280c

Oligo( N- aryl glycines): A New Twist on Structured Peptoids
journal, December 2008

  • Shah, Neel H.; Butterfoss, Glenn L.; Nguyen, Khanh
  • Journal of the American Chemical Society, Vol. 130, Issue 49
  • DOI: 10.1021/ja804580n

Rationally synthesized two-dimensional polymers
journal, May 2013

  • Colson, John W.; Dichtel, William R.
  • Nature Chemistry, Vol. 5, Issue 6
  • DOI: 10.1038/nchem.1628

Toward a Single-Layer Two-Dimensional Honeycomb Supramolecular Organic Framework in Water
journal, October 2013

  • Zhang, Kang-Da; Tian, Jia; Hanifi, David
  • Journal of the American Chemical Society, Vol. 135, Issue 47
  • DOI: 10.1021/ja4086935

Evidence for cis Amide Bonds in Peptoid Nanosheets
journal, April 2018

  • Hudson, Benjamin C.; Battigelli, Alessia; Connolly, Michael D.
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 10
  • DOI: 10.1021/acs.jpclett.8b01040

Design, Synthesis, Assembly, and Engineering of Peptoid Nanosheets
journal, January 2016

  • Robertson, Ellen J.; Battigelli, Alessia; Proulx, Caroline
  • Accounts of Chemical Research, Vol. 49, Issue 3
  • DOI: 10.1021/acs.accounts.5b00439

Shaken, Not Stirred: Collapsing a Peptoid Monolayer To Produce Free-Floating, Stable Nanosheets
journal, December 2011

  • Sanii, Babak; Kudirka, Romas; Cho, Andrew
  • Journal of the American Chemical Society, Vol. 133, Issue 51
  • DOI: 10.1021/ja206199d

Two-Dimensional Polymers: Just a Dream of Synthetic Chemists?
journal, January 2009

  • Sakamoto, Junji; van Heijst, Jeroen; Lukin, Oleg
  • Angewandte Chemie International Edition, Vol. 48, Issue 6
  • DOI: 10.1002/anie.200801863

A simple strategy for the construction of combinatorial cyclic peptoid libraries
journal, January 2010

  • Lee, Ji Hoon; Meyer, Amanda M.; Lim, Hyun-Suk
  • Chemical Communications, Vol. 46, Issue 45
  • DOI: 10.1039/c0cc03272g

Peptoids and Polypeptoids at the Frontier of Supra- and Macromolecular Engineering
journal, December 2015


Folding of a single-chain, information-rich polypeptoid sequence into a highly ordered nanosheet
journal, January 2011

  • Kudirka, Romas; Tran, Helen; Sanii, Babak
  • Biopolymers, Vol. 96, Issue 5
  • DOI: 10.1002/bip.21590

Molecular Engineering of the Peptoid Nanosheet Hydrophobic Core
journal, October 2016


Highly stable and self-repairing membrane-mimetic 2D nanomaterials assembled from lipid-like peptoids
journal, July 2016

  • Jin, Haibao; Jiao, Fang; Daily, Michael D.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12252

Electrospinning of Crystallizable Polypeptoid Fibers
journal, November 2015

  • Thielke, Michael W.; Secker, Christian; Schlaad, Helmut
  • Macromolecular Rapid Communications, Vol. 37, Issue 1
  • DOI: 10.1002/marc.201500502

Thermoreversible and Injectable ABC Polypeptoid Hydrogels: Controlling the Hydrogel Properties through Molecular Design
journal, January 2016


Thermo-induced multistep assembly of double-hydrophilic block copolypeptoids in water
journal, March 2017

  • Bogomolova, Anna; Secker, Christian; Koetz, Joachim
  • Colloid and Polymer Science, Vol. 295, Issue 8
  • DOI: 10.1007/s00396-017-4044-6

Crystallization-Driven Thermoreversible Gelation of Coil-Crystalline Cyclic and Linear Diblock Copolypeptoids
journal, April 2013

  • Lee, Chang-Uk; Lu, Lu; Chen, Jihua
  • ACS Macro Letters, Vol. 2, Issue 5
  • DOI: 10.1021/mz300667n

Crystallization-Driven Two-Dimensional Nanosheet from Hierarchical Self-Assembly of Polypeptoid-Based Diblock Copolymers
journal, August 2018


“Raft” Formation by Two-Dimensional Self-Assembly of Block Copolymer Rod Micelles in Aqueous Solution
journal, July 2014

  • Rizis, Georgios; van de Ven, Theo G. M.; Eisenberg, Adi
  • Angewandte Chemie International Edition, Vol. 53, Issue 34
  • DOI: 10.1002/anie.201404089

Homopolymers as Structure-Driving Agents in Semicrystalline Block Copolymer Micelles
journal, February 2015

  • Rizis, Georgios; van de Ven, Theo G. M.; Eisenberg, Adi
  • ACS Nano, Vol. 9, Issue 4
  • DOI: 10.1021/nn505068u

Crystallization and Melting Behaviors of Cyclic and Linear Polypeptoids with Alkyl Side Chains
journal, October 2013

  • Lee, Chang-Uk; Li, Ang; Ghale, Kushal
  • Macromolecules, Vol. 46, Issue 20
  • DOI: 10.1021/ma401067f

Aqueous Self-Assembly of a Protein-Mimetic Ampholytic Block Copolypeptide
journal, July 2016


Control of Crystallization and Melting Behavior in Sequence Specific Polypeptoids
journal, July 2010

  • Rosales, Adrianne M.; Murnen, Hannah K.; Zuckermann, Ronald N.
  • Macromolecules, Vol. 43, Issue 13
  • DOI: 10.1021/ma1002563

Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles
journal, May 2002

  • Nowak, Andrew P.; Breedveld, Victor; Pakstis, Lisa
  • Nature, Vol. 417, Issue 6887
  • DOI: 10.1038/417424a

Rheology of Block Copolypeptide Solutions:  Hydrogels with Tunable Properties
journal, May 2004

  • Breedveld, Victor; Nowak, Andrew P.; Sato, Jun
  • Macromolecules, Vol. 37, Issue 10
  • DOI: 10.1021/ma049885f

Charged Polypeptide Vesicles with Controllable Diameter
journal, September 2005

  • Holowka, Eric P.; Pochan, Darrin J.; Deming, Timothy J.
  • Journal of the American Chemical Society, Vol. 127, Issue 35
  • DOI: 10.1021/ja053557t

Structural reorganization of cylindrical nanoparticles triggered by polylactide stereocomplexation
journal, December 2014

  • Sun, Liang; Pitto-Barry, Anaïs; Kirby, Nigel
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6746

Polylactide-Based Amphiphilic Block Copolymers: Crystallization-Induced Self-Assembly and Stereocomplexation
journal, October 2018

  • Noack, Sebastian; Schanzenbach, Dirk; Koetz, Joachim
  • Macromolecular Rapid Communications, Vol. 40, Issue 1
  • DOI: 10.1002/marc.201800639

Guest Inclusion and Structural Dynamics in 2-D Hydrogen-Bonded Metal−Organic Frameworks
journal, December 2008

  • Chen, Chun-Long; Beatty, Alicia M.
  • Journal of the American Chemical Society, Vol. 130, Issue 51
  • DOI: 10.1021/ja806180z

Understanding the CDSA of poly(lactide) containing triblock copolymers
journal, January 2017

  • Yu, Wei; Inam, Maria; Jones, Joseph R.
  • Polymer Chemistry, Vol. 8, Issue 36
  • DOI: 10.1039/C7PY01056G

1D vs. 2D shape selectivity in the crystallization-driven self-assembly of polylactide block copolymers
journal, January 2017

  • Inam, Maria; Cambridge, Graeme; Pitto-Barry, Anaïs
  • Chemical Science, Vol. 8, Issue 6
  • DOI: 10.1039/C7SC00641A

Square Lamellar Structure Having Phase-Separated Microdomain in H-Shaped Block Copolymer Thin Film
journal, July 2008

  • Wei, Yuhan; Huang, Weihuan; Li, Binyao
  • Macromolecular Rapid Communications, Vol. 29, Issue 16
  • DOI: 10.1002/marc.200800210

Crystallization-Driven Solution Self-Assembly of Block Copolymers with a Photocleavable Junction
journal, February 2015

  • Gao, Yang; Qiu, Huibin; Zhou, Hang
  • Journal of the American Chemical Society, Vol. 137, Issue 6
  • DOI: 10.1021/ja512968b

Crystallization in Sequence-Defined Peptoid Diblock Copolymers Induced by Microphase Separation
journal, January 2014

  • Sun, Jing; Teran, Alexander A.; Liao, Xunxun
  • Journal of the American Chemical Society, Vol. 136, Issue 5
  • DOI: 10.1021/ja412123y

Works referencing / citing this record:

Polymersomes with aggregation-induced emission based on amphiphilic block copolypeptoids
journal, January 2019

  • Tao, Xinfeng; Chen, Hui; Trépout, Sylvain
  • Chemical Communications, Vol. 55, Issue 90
  • DOI: 10.1039/c9cc07501a

Recent advances in crystallization and self‐assembly of polypeptoid polymers
journal, June 2019

  • Zeng, Guangjian; Qiu, Lu; Wen, Tao
  • POLYMER CRYSTALLIZATION, Vol. 2, Issue 3
  • DOI: 10.1002/pcr2.10065

Self-crosslinking assemblies with tunable nanostructures from photoresponsive polypeptoid-based block copolymers
journal, January 2020

  • Wei, Jirui; Sun, Jing; Yang, Xu
  • Polymer Chemistry, Vol. 11, Issue 2
  • DOI: 10.1039/c9py00385a

ROMPI-CDSA: ring-opening metathesis polymerization-induced crystallization-driven self-assembly of metallo-block copolymers
journal, January 2019

  • Sha, Ye; Rahman, Md Anisur; Zhu, Tianyu
  • Chemical Science, Vol. 10, Issue 42
  • DOI: 10.1039/c9sc03056e