DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrodiffusioosmosis-Induced Negative Differential Resistance in pH-Regulated Mesopores Containing Purely Monovalent Solutions

Abstract

Negative differential resistance (NDR) refers to a unique electrical property where current decreases with increasing voltage. Herein, we report experimental evidence showing that the NDR effect can be observed in mesopores that feature charged pore walls and are subjected to a KCl concentration gradient. NDR in our system originates from the solution and ion flows driven by the synergistic effects of electroosmosis [electroosmotic flow (EOF)] and diffusioosmosis, the so-called electrodiffusioosmosis. Experiments reveal that in addition to the ion current rectification, the mesopores considered here exhibit the NDR phenomenon that is dependent on the magnitude and direction of the salinity gradient and on pH. The NDR behavior can be observed only at conditions at which the EOF and diffusioosmosis occur in the opposite directions: diffusioosmosis fills the tip opening with a high concentration solution, while EOF brings a low concentration solution to the pore. All experimental findings are supported by our numerical model, which takes into account the interfacial site reactions of acidic and basic functional groups on the entire pore membrane surfaces. Our results provide an important insight into how liquid pH, salinity gradients, interfacial site reactions, and pore geometries can influence the current-voltage characteristics of mesopores, enriching transport modesmore » that can be induced by voltage.« less

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo; ORCiD logo [2]
  1. Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
  2. Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
  3. Bright Shetland International Company, Ltd., New Taipei City 22101, Taiwan
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). The Center for Enhanced Nanofluidic Transport (CENT); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Ministry of Science and Technology (MOST)
OSTI Identifier:
1580673
Alternate Identifier(s):
OSTI ID: 1591751
Grant/Contract Number:  
SC0019112
Resource Type:
Published Article
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Name: ACS Applied Materials and Interfaces Journal Volume: 12 Journal Issue: 2; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; nanofluidics; ion transport; ionic circuit; ion current rectification; negative differential resistance

Citation Formats

Lin, Chih-Yuan, Wong, Pei-Hsuan, Wang, Pei-Hsin, Siwy, Zuzanna S., and Yeh, Li-Hsien. Electrodiffusioosmosis-Induced Negative Differential Resistance in pH-Regulated Mesopores Containing Purely Monovalent Solutions. United States: N. p., 2019. Web. doi:10.1021/acsami.9b18524.
Lin, Chih-Yuan, Wong, Pei-Hsuan, Wang, Pei-Hsin, Siwy, Zuzanna S., & Yeh, Li-Hsien. Electrodiffusioosmosis-Induced Negative Differential Resistance in pH-Regulated Mesopores Containing Purely Monovalent Solutions. United States. https://doi.org/10.1021/acsami.9b18524
Lin, Chih-Yuan, Wong, Pei-Hsuan, Wang, Pei-Hsin, Siwy, Zuzanna S., and Yeh, Li-Hsien. Tue . "Electrodiffusioosmosis-Induced Negative Differential Resistance in pH-Regulated Mesopores Containing Purely Monovalent Solutions". United States. https://doi.org/10.1021/acsami.9b18524.
@article{osti_1580673,
title = {Electrodiffusioosmosis-Induced Negative Differential Resistance in pH-Regulated Mesopores Containing Purely Monovalent Solutions},
author = {Lin, Chih-Yuan and Wong, Pei-Hsuan and Wang, Pei-Hsin and Siwy, Zuzanna S. and Yeh, Li-Hsien},
abstractNote = {Negative differential resistance (NDR) refers to a unique electrical property where current decreases with increasing voltage. Herein, we report experimental evidence showing that the NDR effect can be observed in mesopores that feature charged pore walls and are subjected to a KCl concentration gradient. NDR in our system originates from the solution and ion flows driven by the synergistic effects of electroosmosis [electroosmotic flow (EOF)] and diffusioosmosis, the so-called electrodiffusioosmosis. Experiments reveal that in addition to the ion current rectification, the mesopores considered here exhibit the NDR phenomenon that is dependent on the magnitude and direction of the salinity gradient and on pH. The NDR behavior can be observed only at conditions at which the EOF and diffusioosmosis occur in the opposite directions: diffusioosmosis fills the tip opening with a high concentration solution, while EOF brings a low concentration solution to the pore. All experimental findings are supported by our numerical model, which takes into account the interfacial site reactions of acidic and basic functional groups on the entire pore membrane surfaces. Our results provide an important insight into how liquid pH, salinity gradients, interfacial site reactions, and pore geometries can influence the current-voltage characteristics of mesopores, enriching transport modes that can be induced by voltage.},
doi = {10.1021/acsami.9b18524},
journal = {ACS Applied Materials and Interfaces},
number = 2,
volume = 12,
place = {United States},
year = {2019},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acsami.9b18524

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Rectification of ionic current in nanopores functionalized with bipolar polyelectrolyte brushes
journal, April 2018


Calcium-Induced Voltage Gating in Single Conical Nanopores
journal, August 2006

  • Siwy, Zuzanna S.; Powell, Matthew R.; Petrov, Alexander
  • Nano Letters, Vol. 6, Issue 8
  • DOI: 10.1021/nl061114x

Three-Terminal Graphene Negative Differential Resistance Devices
journal, February 2012

  • Wu, Yanqing; Farmer, Damon B.; Zhu, Wenjuan
  • ACS Nano, Vol. 6, Issue 3
  • DOI: 10.1021/nn205106z

Nanoscale Fluid Vortices and Nonlinear Electroosmotic Flow Drive Ion Current Rectification in the Presence of Concentration Gradients
journal, July 2019

  • Rabinowitz, Jake; Edwards, Martin A.; Whittier, Elizabeth
  • The Journal of Physical Chemistry A, Vol. 123, Issue 38
  • DOI: 10.1021/acs.jpca.9b04075

Tuning Ion Transport and Selectivity by a Salt Gradient in a Charged Nanopore
journal, February 2014

  • Yeh, Li-Hsien; Hughes, Christopher; Zeng, Zhenping
  • Analytical Chemistry, Vol. 86, Issue 5
  • DOI: 10.1021/ac4040136

Hybrid nanochannel membrane based on polymer/MOF for high-performance salinity gradient power generation
journal, November 2018


Highly Sensitive Biosensing with Solid-State Nanopores Displaying Enzymatically Reconfigurable Rectification Properties
journal, April 2018


pH-regulated ionic current rectification in conical nanopores functionalized with polyelectrolyte brushes
journal, January 2014

  • Zeng, Zhenping; Ai, Ye; Qian, Shizhi
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 6
  • DOI: 10.1039/c3cp54097a

Continuously Tunable Ion Rectification and Conductance in Submicrochannels Stemming from Thermoresponsive Polymer Self‐Assembly
journal, September 2019

  • Wu, Yafeng; Yang, Guang; Lin, Mingchang
  • Angewandte Chemie International Edition, Vol. 58, Issue 36
  • DOI: 10.1002/anie.201906360

Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry
journal, April 2006


Direct Exosome Quantification via Bivalent-Cholesterol-Labeled DNA Anchor for Signal Amplification
journal, November 2017


Voltage-Rectified Current and Fluid Flow in Conical Nanopores
journal, September 2016


Asymmetric-Fluidic-Reservoirs Induced High Rectification Nanofluidic Diode
journal, September 2018


Quantitative Sizing of Nano/Microparticles with a Tunable Elastomeric Pore Sensor
journal, May 2011

  • Vogel, Robert; Willmott, Geoff; Kozak, Darby
  • Analytical Chemistry, Vol. 83, Issue 9
  • DOI: 10.1021/ac200195n

Anomalous pH-Dependent Nanofluidic Salinity Gradient Power
journal, October 2017


Tuning Ion Transport through a Nanopore by Self-Oscillating Chemical Reactions
journal, February 2019


Negative Differential Electrolyte Resistance in a Solid-State Nanopore Resulting from Electroosmotic Flow Bistability
journal, March 2014

  • Luo, Long; Holden, Deric A.; White, Henry S.
  • ACS Nano, Vol. 8, Issue 3
  • DOI: 10.1021/nn500379j

Room-Temperature Negative Differential Resistance in Graphene Field Effect Transistors: Experiments and Theory
journal, January 2015

  • Sharma, Pankaj; Bernard, Laurent Syavoch; Bazigos, Antonios
  • ACS Nano, Vol. 9, Issue 1
  • DOI: 10.1021/nn5059437

Ion Transport in a pH-Regulated Nanopore
journal, July 2013

  • Yeh, Li-Hsien; Zhang, Mingkan; Qian, Shizhi
  • Analytical Chemistry, Vol. 85, Issue 15
  • DOI: 10.1021/ac401536g

New Phenomenon in Narrow Germanium p n Junctions
journal, January 1958


Electrokinetic Phenomena in Organic Solvents
journal, June 2019

  • Lucas, Rachel A.; Lin, Chih-Yuan; Siwy, Zuzanna S.
  • The Journal of Physical Chemistry B, Vol. 123, Issue 28
  • DOI: 10.1021/acs.jpcb.9b04969

Rectification of Ion Current in Nanopipettes by External Substrates
journal, November 2013

  • Sa, Niya; Lan, Wen-Jie; Shi, Wenqing
  • ACS Nano, Vol. 7, Issue 12
  • DOI: 10.1021/nn4050485

Salt gradient driven ion transport in solid-state nanopores: the crucial role of reservoir geometry and size
journal, January 2016

  • Lin, Chih-Yuan; Chen, Fu; Yeh, Li-Hsien
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 43
  • DOI: 10.1039/c6cp06459k

Tunable Resistive Pulse Sensing: Better Size and Charge Measurements for Submicrometer Colloids
journal, February 2018


Voltage-Induced Modulation of Ionic Concentrations and Ion Current Rectification in Mesopores with Highly Charged Pore Walls
journal, January 2018

  • Lin, Chih-Yuan; Yeh, Li-Hsien; Siwy, Zuzanna S.
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 2
  • DOI: 10.1021/acs.jpclett.7b03099

Regulating Current Rectification and Nanoparticle Transport Through a Salt Gradient in Bipolar Nanopores
journal, July 2015


Negative Incremental Resistance Induced by Calcium in Asymmetric Nanopores
journal, March 2006

  • Siwy, Zuzanna S.; Powell, Matthew R.; Kalman, Eric
  • Nano Letters, Vol. 6, Issue 3
  • DOI: 10.1021/nl0524290

Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion
journal, June 2017

  • Zhang, Zhen; Sui, Xin; Li, Pei
  • Journal of the American Chemical Society, Vol. 139, Issue 26
  • DOI: 10.1021/jacs.7b02794

Tuning Transport Properties of Nanofluidic Devices with Local Charge Inversion
journal, April 2009

  • He, Yan; Gillespie, Dirk; Boda, Dezsö
  • Journal of the American Chemical Society, Vol. 131, Issue 14
  • DOI: 10.1021/ja808717u

Ion Current Rectification Behavior of Bioinspired Nanopores Having a pH-Tunable Zwitterionic Surface
journal, March 2017


Electroosmotic Flow Can Generate Ion Current Rectification in Nano- and Micropores
journal, December 2009

  • Yusko, Erik C.; An, Ran; Mayer, Michael
  • ACS Nano, Vol. 4, Issue 1
  • DOI: 10.1021/nn9013438

Bioinspired Heterogeneous Ion Pump Membranes: Unidirectional Selective Pumping and Controllable Gating Properties Stemming from Asymmetric Ionic Group Distribution
journal, January 2018

  • Zhang, Zhen; Li, Pei; Kong, Xiang-Yu
  • Journal of the American Chemical Society, Vol. 140, Issue 3
  • DOI: 10.1021/jacs.7b11472

Osmotic Power Generation with Positively and Negatively Charged 2D Nanofluidic Membrane Pairs
journal, October 2016

  • Ji, Jinzhao; Kang, Qian; Zhou, Yi
  • Advanced Functional Materials, Vol. 27, Issue 2
  • DOI: 10.1002/adfm.201603623

Magnetic Gated Biomimetic Artificial Nanochannels for Controllable Ion Transportation Inspired by Homing Pigeon
journal, February 2018


Electrodiffusioosmosis in a Solid-State Nanopore Connecting Two Large Reservoirs: Optimum Pore Size
journal, August 2014

  • Chung, Yu-Chih; Hsu, Jyh-Ping; Tseng, Shiojenn
  • The Journal of Physical Chemistry C, Vol. 118, Issue 33
  • DOI: 10.1021/jp506466w

Tunable Negative Differential Electrolyte Resistance in a Conical Nanopore in Glass
journal, June 2012

  • Luo, Long; Holden, Deric A.; Lan, Wen-Jie
  • ACS Nano, Vol. 6, Issue 7
  • DOI: 10.1021/nn3023409

Engineered voltage-responsive nanopores
journal, January 2010

  • Siwy, Zuzanna S.; Howorka, Stefan
  • Chem. Soc. Rev., Vol. 39, Issue 3
  • DOI: 10.1039/b909105j

Viscosity and Conductivity Tunable Diode-like Behavior for Meso- and Micropores
journal, August 2017

  • Qiu, Yinghua; Lucas, Rachel A.; Siwy, Zuzanna S.
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 16
  • DOI: 10.1021/acs.jpclett.7b01804

The Design and Characterization of Multifunctional Aptamer Nanopore Sensors
journal, April 2018


Diffusioosmotic flows in slit nanochannels
journal, November 2007

  • Qian, Shizhi; Das, Biswajit; Luo, Xiaobing
  • Journal of Colloid and Interface Science, Vol. 315, Issue 2
  • DOI: 10.1016/j.jcis.2007.06.075

Enhanced Stability and Controllability of an Ionic Diode Based on Funnel-Shaped Nanochannels with an Extended Critical Region
journal, March 2016


Bioinspired smart asymmetric nanochannel membranes
journal, January 2018

  • Zhang, Zhen; Wen, Liping; Jiang, Lei
  • Chemical Society Reviews, Vol. 47, Issue 2
  • DOI: 10.1039/c7cs00688h

Nanoprecipitation-assisted ion current oscillations
journal, December 2007

  • Powell, Matthew R.; Sullivan, Michael; Vlassiouk, Ivan
  • Nature Nanotechnology, Vol. 3, Issue 1
  • DOI: 10.1038/nnano.2007.420

Pressure-Dependent Ion Current Rectification in Conical-Shaped Glass Nanopores
journal, August 2011

  • Lan, Wen-Jie; Holden, Deric A.; White, Henry S.
  • Journal of the American Chemical Society, Vol. 133, Issue 34
  • DOI: 10.1021/ja205773a

Micrometer-Scale Ion Current Rectification at Polyelectrolyte Brush-Modified Micropipets
journal, January 2017

  • He, Xiulan; Zhang, Kailin; Li, Ting
  • Journal of the American Chemical Society, Vol. 139, Issue 4
  • DOI: 10.1021/jacs.6b11696

Biosensing with Nanofluidic Diodes
journal, June 2009

  • Vlassiouk, Ivan; Kozel, Thomas R.; Siwy, Zuzanna S.
  • Journal of the American Chemical Society, Vol. 131, Issue 23
  • DOI: 10.1021/ja901120f

Rectification of Concentration Polarization in Mesopores Leads To High Conductance Ionic Diodes and High Performance Osmotic Power
journal, February 2019

  • Lin, Chih-Yuan; Combs, Cody; Su, Yen-Shao
  • Journal of the American Chemical Society, Vol. 141, Issue 8
  • DOI: 10.1021/jacs.8b13497

Effects of Electroosmotic Flow on Ionic Current Rectification in Conical Nanopores
journal, February 2010

  • Ai, Ye; Zhang, Mingkan; Joo, Sang W.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 9
  • DOI: 10.1021/jp911773m

Negative Differential Resistance in Carbon Atomic Wire-Carbon Nanotube Junctions
journal, September 2008

  • Khoo, Khoong Hong; Neaton, J. B.; Son, Young Woo
  • Nano Letters, Vol. 8, Issue 9
  • DOI: 10.1021/nl8017143

High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation
journal, August 2014

  • Gao, Jun; Guo, Wei; Feng, Dan
  • Journal of the American Chemical Society, Vol. 136, Issue 35
  • DOI: 10.1021/ja503692z