skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on December 29, 2020

Title: Utilizing TiO 2 amorphous precursors for polymorph selection: An in situ TEM study of phase formation and kinetics

Authors:
ORCiD logo [1];  [2];  [2]; ORCiD logo [1]
  1. Department of Metallurgical and Materials Engineering Colorado School of Mines Golden CO USA
  2. National Renewable Energy Laboratory Golden CO USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1580635
Grant/Contract Number:  
DE‐AC3608GO28308
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Journal of the American Ceramic Society
Additional Journal Information:
Journal Name: Journal of the American Ceramic Society; Journal ID: ISSN 0002-7820
Publisher:
Wiley-Blackwell
Country of Publication:
United States
Language:
English

Citation Formats

Mangum, John S., Garten, Lauren M., Ginley, David S., and Gorman, Brian P. Utilizing TiO 2 amorphous precursors for polymorph selection: An in situ TEM study of phase formation and kinetics. United States: N. p., 2019. Web. doi:10.1111/jace.16965.
Mangum, John S., Garten, Lauren M., Ginley, David S., & Gorman, Brian P. Utilizing TiO 2 amorphous precursors for polymorph selection: An in situ TEM study of phase formation and kinetics. United States. doi:10.1111/jace.16965.
Mangum, John S., Garten, Lauren M., Ginley, David S., and Gorman, Brian P. Mon . "Utilizing TiO 2 amorphous precursors for polymorph selection: An in situ TEM study of phase formation and kinetics". United States. doi:10.1111/jace.16965.
@article{osti_1580635,
title = {Utilizing TiO 2 amorphous precursors for polymorph selection: An in situ TEM study of phase formation and kinetics},
author = {Mangum, John S. and Garten, Lauren M. and Ginley, David S. and Gorman, Brian P.},
abstractNote = {},
doi = {10.1111/jace.16965},
journal = {Journal of the American Ceramic Society},
number = ,
volume = ,
place = {United States},
year = {2019},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on December 29, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Nanocrystalline Brookite with Enhanced Stability and Photocatalytic Activity: Influence of Lanthanum(III) Doping
journal, January 2012

  • Perego, Céline; Wang, Yu-heng; Durupthy, Olivier
  • ACS Applied Materials & Interfaces, Vol. 4, Issue 2
  • DOI: 10.1021/am201397n

Taking Advantage of Disorder: Amorphous Calcium Carbonate and Its Roles in Biomineralization
journal, June 2003


The Johnson-Mehl- Avrami-Kohnogorov model: A brief review
journal, July 1998

  • Fanfoni, M.; Tomellini, M.
  • Il Nuovo Cimento D, Vol. 20, Issue 7-8
  • DOI: 10.1007/BF03185527

Tailored Preparation Methods of TiO 2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties
journal, February 2010

  • Dambournet, Damien; Belharouak, Ilias; Amine, Khalil
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm902613h

Anatase, Brookite, and Rutile Nanocrystals via Redox Reactions under Mild Hydrothermal Conditions:  Phase-Selective Synthesis and Physicochemical Properties
journal, April 2007

  • Li, Ji-Guang; Ishigaki, Takamasa; Sun, Xudong
  • The Journal of Physical Chemistry C, Vol. 111, Issue 13
  • DOI: 10.1021/jp0673258

Brookite, the Least Known TiO2 Photocatalyst
journal, January 2013

  • Di Paola, Agatino; Bellardita, Marianna; Palmisano, Leonardo
  • Catalysts, Vol. 3, Issue 1
  • DOI: 10.3390/catal3010036

Correlative Raman spectroscopy and focused ion beam for targeted phase boundary analysis of titania polymorphs
journal, May 2018


High-fraction brookite films from amorphous precursors
journal, November 2017

  • Haggerty, James E. S.; Schelhas, Laura T.; Kitchaev, Daniil A.
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/s41598-017-15364-y

Formation op Titanic Oxides of Anatase, Brookete and Rutile Types by Aerial Oxidation of Titanous Solutions
journal, January 1972

  • Kiyama, Masao; Akita, Toshikazu; Tsutsumi, Yuji
  • Chemistry Letters, Vol. 1, Issue 1
  • DOI: 10.1246/cl.1972.21

The O−Ti (Oxygen-Titanium) system
journal, April 1987

  • Murray, J. L.; Wriedt, H. A.
  • Journal of Phase Equilibria, Vol. 8, Issue 2
  • DOI: 10.1007/BF02873201

Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates:  Insights from TiO 2
journal, April 2000

  • Zhang, Hengzhong; Banfield, Jillian F.
  • The Journal of Physical Chemistry B, Vol. 104, Issue 15
  • DOI: 10.1021/jp000499j

Growth far from equilibrium: Examples from III-V semiconductors
journal, December 2016

  • Kuech, Thomas F.; Babcock, Susan E.; Mawst, Luke
  • Applied Physics Reviews, Vol. 3, Issue 4
  • DOI: 10.1063/1.4944801

[各種チタン化合物からのブルッカイトの水熱合成とその生成機構について]<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1979-01-01">January 1979</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Oota, Toshitaka; Yamai, Iwao; Saito, Hajime</span> </li> <li> Journal of the Ceramic Association, Japan, Vol. 87, Issue 1010</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.2109/jcersj1950.87.1010_512" class="text-muted" target="_blank" rel="noopener noreferrer">10.2109/jcersj1950.87.1010_512<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1038/nmeth.2019" target="_blank" rel="noopener noreferrer" class="name">Fiji: an open-source platform for biological-image analysis<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2012-06-28">June 2012</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Schindelin, Johannes; Arganda-Carreras, Ignacio; Frise, Erwin</span> </li> <li> Nature Methods, Vol. 9, Issue 7</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1038/nmeth.2019" class="text-muted" target="_blank" rel="noopener noreferrer">10.1038/nmeth.2019<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1080/13642819908214860" target="_blank" rel="noopener noreferrer" class="name">Some electronic and metastability properties of a new nanostructured material: Hydrogenated polymorphous silicon<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1999-07-01">July 1999</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Butté, R.; Meaudre, R.; Meaudre, M.</span> </li> <li> Philosophical Magazine B, Vol. 79, Issue 7</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1080/13642819908214860" class="text-muted" target="_blank" rel="noopener noreferrer">10.1080/13642819908214860<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/cm990172z" target="_blank" rel="noopener noreferrer" class="name">Effect of Hydrothermal Treatment of Amorphous Titania on the Phase Change from Anatase to Rutile during Calcination<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1999-10-01">October 1999</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Ovenstone, James; Yanagisawa, Kazumichi</span> </li> <li> Chemistry of Materials, Vol. 11, Issue 10</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/cm990172z" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/cm990172z<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/jp802335h" target="_blank" rel="noopener noreferrer" class="name">Different Reactivities of TiO <sub>2</sub> Polymorphs:  Comparative DFT Calculations of Water and Formic Acid Adsorption at Anatase and Brookite TiO <sub>2</sub> Surfaces<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2008-05-01">May 2008</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Li, Wei-Kun; Gong, Xue-Qing; Lu, Guanzhong</span> </li> <li> The Journal of Physical Chemistry C, Vol. 112, Issue 17</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/jp802335h" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/jp802335h<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1088/0957-4484/19/14/145605" target="_blank" rel="noopener noreferrer" class="name">Phase-pure TiO <sub>2</sub> nanoparticles: anatase, brookite and rutile<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2008-03-05">March 2008</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Reyes-Coronado, D.; Rodríguez-Gattorno, G.; Espinosa-Pesqueira, M. E.</span> </li> <li> Nanotechnology, Vol. 19, Issue 14</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1088/0957-4484/19/14/145605" class="text-muted" target="_blank" rel="noopener noreferrer">10.1088/0957-4484/19/14/145605<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s00339-008-4818-2" target="_blank" rel="noopener noreferrer" class="name">In situ transmission electron microscopy observations of the crystallization of amorphous Ge films<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2008-08-01">August 2008</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Cao, Z. H.; Liu, P.; Meng, X. K.</span> </li> <li> Applied Physics A, Vol. 94, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s00339-008-4818-2" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s00339-008-4818-2<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/cm020072k" target="_blank" rel="noopener noreferrer" class="name">Kinetics of Crystallization and Crystal Growth of Nanocrystalline Anatase in Nanometer-Sized Amorphous Titania<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2002-10-01">October 2002</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Zhang, Hengzhong; Banfield, Jillian F.</span> </li> <li> Chemistry of Materials, Vol. 14, Issue 10</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/cm020072k" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/cm020072k<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1126/sciadv.1700270" target="_blank" rel="noopener noreferrer" class="name">Novel phase diagram behavior and materials design in heterostructural semiconductor alloys<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2017-06-01">June 2017</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Holder, Aaron M.; Siol, Sebastian; Ndione, Paul F.</span> </li> <li> Science Advances, Vol. 3, Issue 6</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1126/sciadv.1700270" class="text-muted" target="_blank" rel="noopener noreferrer">10.1126/sciadv.1700270<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.jnoncrysol.2018.10.049" target="_blank" rel="noopener noreferrer" class="name">Selective brookite polymorph formation related to the amorphous precursor state in TiO2 thin films<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2019-02-01">February 2019</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Mangum, John S.; Agirseven, Okan; Haggerty, James E. S.</span> </li> <li> Journal of Non-Crystalline Solids, Vol. 505</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.jnoncrysol.2018.10.049" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.jnoncrysol.2018.10.049<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1063/1.1750631" target="_blank" rel="noopener noreferrer" class="name">Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1940-02-01">February 1940</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Avrami, Melvin</span> </li> <li> The Journal of Chemical Physics, Vol. 8, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1063/1.1750631" class="text-muted" target="_blank" rel="noopener noreferrer">10.1063/1.1750631<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.msec.2005.08.032" target="_blank" rel="noopener noreferrer" class="name">Titanium alloys for biomedical applications<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2006-09-01">September 2006</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Rack, H. J.; Qazi, J. I.</span> </li> <li> Materials Science and Engineering: C, Vol. 26, Issue 8</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.msec.2005.08.032" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.msec.2005.08.032<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.2465/minerj.9.236" target="_blank" rel="noopener noreferrer" class="name">Brookite formation from precipitates containing calcium ions.<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1978-01-01">January 1978</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Mitsuhashi, T.; Watanabe, M.</span> </li> <li> Mineralogical Journal, Vol. 9, Issue 4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.2465/minerj.9.236" class="text-muted" target="_blank" rel="noopener noreferrer">10.2465/minerj.9.236<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1063/1.356014" target="_blank" rel="noopener noreferrer" class="name">Mode of growth and microstructure of polycrystalline silicon obtained by solid‐phase crystallization of an amorphous silicon film<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1994-04-15">April 1994</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Haji, L.; Joubert, P.; Stoemenos, J.</span> </li> <li> Journal of Applied Physics, Vol. 75, Issue 8</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1063/1.356014" class="text-muted" target="_blank" rel="noopener noreferrer">10.1063/1.356014<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1246/cl.1999.911" target="_blank" rel="noopener noreferrer" class="name">Hydrothermal Synthesis of Brookite<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1999-09-01">September 1999</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Nagase, Takako; Ebina, Takeo; Iwasaki, Takashi</span> </li> <li> Chemistry Letters, Vol. 28, Issue 9</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1246/cl.1999.911" class="text-muted" target="_blank" rel="noopener noreferrer">10.1246/cl.1999.911<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1063/1.4958674" target="_blank" rel="noopener noreferrer" class="name">Influence of amorphous structure on polymorphism in vanadia<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2016-07-01">July 2016</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Stone, Kevin H.; Schelhas, Laura T.; Garten, Lauren M.</span> </li> <li> APL Materials, Vol. 4, Issue 7</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1063/1.4958674" class="text-muted" target="_blank" rel="noopener noreferrer">10.1063/1.4958674<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1557/JMR.1987.0201" target="_blank" rel="noopener noreferrer" class="name">The oriented growth of anatase in thin films of amorphous titania<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1987-04-01">April 1987</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Howitt, D. G.; Harker, A. B.</span> </li> <li> Journal of Materials Research, Vol. 2, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1557/JMR.1987.0201" class="text-muted" target="_blank" rel="noopener noreferrer">10.1557/JMR.1987.0201<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1063/1.1750380" target="_blank" rel="noopener noreferrer" class="name">Kinetics of Phase Change. I General Theory<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1939-12-01">December 1939</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Avrami, Melvin</span> </li> <li> The Journal of Chemical Physics, Vol. 7, Issue 12, p. 1103-1112</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1063/1.1750380" class="text-muted" target="_blank" rel="noopener noreferrer">10.1063/1.1750380<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.scriptamat.2016.07.010" target="_blank" rel="noopener noreferrer" class="name">Thin film phase transformation kinetics: From theory to experiment<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2016-11-01">November 2016</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Moghadam, M. M.; Voorhees, P. W.</span> </li> <li> Scripta Materialia, Vol. 124</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.scriptamat.2016.07.010" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.scriptamat.2016.07.010<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s10853-012-6465-4" target="_blank" rel="noopener noreferrer" class="name">Tartaric acid-assisted preparation and photocatalytic performance of titania nanoparticles with controllable phases of anatase and brookite<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2012-04-17">April 2012</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Shen, Xiaojun; Zhang, Jinlong; Tian, Baozhu</span> </li> <li> Journal of Materials Science, Vol. 47, Issue 15</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s10853-012-6465-4" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s10853-012-6465-4<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1107/S0021889809013727" target="_blank" rel="noopener noreferrer" class="name">Determination of the degree of preferred orientation within the March–Dollase approach<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2009-05-15">May 2009</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Zolotoyabko, Emil</span> </li> <li> Journal of Applied Crystallography, Vol. 42, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1107/S0021889809013727" class="text-muted" target="_blank" rel="noopener noreferrer">10.1107/S0021889809013727<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/(SICI)1521-4095(200001)12:1<38::AID-ADMA38>3.0.CO;2-I" target="_blank" rel="noopener noreferrer" class="name">Formation of High-Magnesian Calcites via an Amorphous Precursor Phase: Possible Biological Implications<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2000-01-01">January 2000</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Raz, S.; Weiner, S.; Addadi, L.</span> </li> <li> Advanced Materials, Vol. 12, Issue 1, p. 38-42</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/(SICI)1521-4095(200001)12:1<38::AID-ADMA38>3.0.CO;2-I" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/(SICI)1521-4095(200001)12:1<38::AID-ADMA38>3.0.CO;2-I<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1063/1.1415544" target="_blank" rel="noopener noreferrer" class="name">Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2001-12-01">December 2001</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Singh, A. V.; Mehra, R. M.; Buthrath, Nuttawuth</span> </li> <li> Journal of Applied Physics, Vol. 90, Issue 11</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1063/1.1415544" class="text-muted" target="_blank" rel="noopener noreferrer">10.1063/1.1415544<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/cm9023887" target="_blank" rel="noopener noreferrer" class="name">Novel Metastable Hexagonal MoO <sub>3</sub> Nanobelts: Synthesis, Photochromic, and Electrochromic Properties<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2009-12-08">December 2009</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Zheng, Lei; Xu, Yang; Jin, Dong</span> </li> <li> Chemistry of Materials, Vol. 21, Issue 23</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/cm9023887" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/cm9023887<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1557/JMR.2002.0077" target="_blank" rel="noopener noreferrer" class="name">Nitrogen Effects on Crystallization Kinetics of Amorphous TiO <sub> <em>x</em> </sub> N <sub> <em>y</em> </sub> Thin Films<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2002-03-01">March 2002</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Hukari, Kyle; Dannenberg, Rand; Stach, E. A.</span> </li> <li> Journal of Materials Research, Vol. 17, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1557/JMR.2002.0077" class="text-muted" target="_blank" rel="noopener noreferrer">10.1557/JMR.2002.0077<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1111/j.1151-2916.2000.tb01150.x" target="_blank" rel="noopener noreferrer" class="name">Crystallization of Amorphous Precursors in the CalciaAlumina System: A Differential Scanning Calorimetry Study<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2000-01-01">January 2000</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Douy, Andr; Gervais, Monique</span> </li> <li> Journal of the American Ceramic Society, Vol. 83, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1111/j.1151-2916.2000.tb01150.x" class="text-muted" target="_blank" rel="noopener noreferrer">10.1111/j.1151-2916.2000.tb01150.x<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div></div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="fa fa-angle-left"></span></a><ul class="pagination d-inline-block" style="padding-left:.2em;"></ul><a class="pure-button next page" href="#" rel="next"><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All References</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (38)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted reference-search"> <label for="reference-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="reference-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="reference-search-sort-name"><label for="reference-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="reference-search-sort-date"><label for="reference-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> </form> </div> </div> </div> </section> <section id="biblio-related" class="tab-content tab-content-sec " data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <section id="biblio-similar" class="tab-content tab-content-sec active" data-tab="related"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Similar records in OSTI.GOV collections:</p> <aside> <ul class="item-list" itemscope itemtype="http://schema.org/ItemList" style="padding-left:0; list-style-type: none;"> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="0" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1485571-selective-brookite-polymorph-formation-related-amorphous-precursor-state-tio2-thin-films" itemprop="url">Selective Brookite Polymorph Formation Related to the Amorphous Precursor State in TiO <sub>2</sub> Thin Films</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Mangum, John S.</span> ; <span class="author">Agirseven, Okan</span> ; <span class="author">Haggerty, James E. S.</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Journal of Non-Crystalline Solids</span> </span> </div> <div class="abstract">A wide variety of brookite TiO <sub>2</sub> synthesis methods have been published over the past several decades, but few studies discuss the underlying mechanism that stabilizes brookite over its stable counterparts, rutile and anatase. Here in this study, we investigate of the effect of pulsed laser deposition parameters on the as-deposited amorphous precursor titania thin films, which subsequently crystallize into stable and metastable TiO <sub>2</sub> polymorphs upon annealing. We find that oxygen pressure in the deposition chamber strongly influences the non-equilibrium state of the amorphous precursor, which ultimately allows for selective polymorph formation. Rutile forms as the dominant phase at<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> low pO <sub>2</sub> < 0.1 mTorr, while anatase is favored at high pO <sub>2</sub> > 5 mTorr. Brookite forms primarily at intermediate pO <sub>2</sub> (0.5-1.0 mTorr). Controlling the amorphous structure (i.e. Ti - O bonding and polyhedral arrangement) of the precursors via oxygen deficiency is therefore likely for the selective formation of crystalline TiO <sub>2</sub> polymorphs from sub-stoichiometric amorphous precursors. Lastly, directing phase selectivity by manipulating the structure and internal energy of the precursor amorphous state may have tremendous potential for synthesis of metastable crystalline phases that exhibit more desirable properties in comparison to their stable counterparts.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1016/j.jnoncrysol.2018.10.049" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1485571" data-product-type="Journal Article" data-product-subtype="AM" >10.1016/j.jnoncrysol.2018.10.049</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1485571" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1485571" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="1" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1406527-final-report-situ-tem-observations-degradation-mechanisms-next-generation-high-energy-density-lithium-ion-battery-systems" itemprop="url">Final Report: In-Situ TEM Observations of Degradation Mechanisms in Next-Generation High-Energy Density Lithium-Ion Battery Systems</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Technical Report</small><span class="authors"> <span class="author">Dillon, Shen J.</span> <span class="text-muted pubdata"></span> </span> </div> <div class="abstract">This project originally sought to characterize nanoscale processes associated with the degradation of next-generation high energy density lithium-ion battery electrodes via in-situ transmission electron microscopy (TEM). The research also focused on developing the experimental techniques necessary for investigating electrochemical systems by in-situ transmission electron microscopy and providing a framework for understanding and quantifying electron beam effects that influence experimental results. In line with these goals, this project demonstrated and published the first in-situ TEM cycling of a Li-ion battery electrode in commercially relevant non-aqueous electrolyte: a technique subsequently adopted by a number of researchers in the field. Experiments performed on<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> Sn anodes, demonstrated porosity evolution during Li dealloying as a mechanism for strain accommodation during the first cycle, and observed partially reversible crystalline to amorphous phase transitions associated with Li insertion and extraction in subsequent cycles. Complementary study of in-situ dealloying in a simple model, Au-Cu, was also performed. We also published the earliest quantitative measurements of electron beam effects in aqueous and non-aqueous liquids. Specifically, we utilized a model system to quantify the fraction of incident electron beam that contributed to charge transfer mediated reactions in non-aqueous liquid, since such liquids are primarily dose sensitive. We also quantified the evolution of model aqueous chemistries as a function of dose rate and chemical potential to better understand the reaction mechanisms active in liquids exposed to electron beams. The original project goals included the use of controlled environments to simulate different battery operational conditions. To aid such experiments, we developed new experimental apparatuses and techniques to perform in-situ liquid cell TEM under controlled temperature, including heating and cooling. We demonstrated this capability in aqueous systems; specifically understanding phase selection and solid-liquid interface interactions with particles during water crystallization and hydrothermal precipitation kinetics of ZnO. We also published the first demonstration of in-situ TEM based high-field (plasma) experiments and in-situ TEM of aqueous photochemistry, which demonstrated an previously unrecognized early growth mode transition during Au sputtering and delocalization of gas bubble nucleation during water splitting, respectively. In addition to the scientific results, this portion of the project greatly expanded the range of systems that can be characterized in realistic environments at the nanoscale via in-situ TEM. Unfortunately, commercial battery electrolytes are quite sensitive to electron dose. This limits the time of acquisition and/or the spatial resolution of the experiments. The same problem has been encountered in all subsequent publications in the field. The major problem, relative to the project original goals, is that long term cycling is challenging to characterize and the desired high resolution or analytical capabilities are limited. In line with our original goals to characterize battery reaction and degradation mechanisms under controlled electrochemical cycling, we developed a completely new type of Li-ion electrochemical cell that has been useful for both structural and analytical characterization. To date, we have demonstrated this platform for in-situ cycling of Li-ion batteries during scanning electron microscopy (SEM), Auger electron spectroscopy (AES), and x-ray photoelectron spectroscopy (XPS). In-situ AES has been found to be a quite powerful tool to characterize the chemical evolution of Li-ion batteries cycled in-situ and much of our effort in the final project period has focused on charactering Li-ion cathodes using the technique. We utilized in-situ SEM to propose a new mechanism for Li whisker/dendrite formation and show the importance of diffusion mediated stress relaxation in fracture of Sn anode particles. A combination of in-situ XPS and AES was used to clarify the CuO anode reaction mechanism. In the final project period, we have gained new insights into surface reactions occurring on cathodes at high voltage using in-situ AES. Specifically, we have discovered that many of the SEI formation reactions typically attributed to electrolyte decomposition are actually more fundamental to the electrode material surface thermodynamics in the presence of an arbitrary carbon source. These insights greatly affect how we understand and control surface degradation induced capacity fade at cathodes. Finally, we have made some effort to apply this novel in-situ platform to TEM characterization and believe this is a fruitful avenue for future research.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.2172/1406527" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1406527" data-product-type="Technical Report" data-product-subtype="" >10.2172/1406527</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1406527" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1406527" data-product-type="Technical Report" data-product-subtype="" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="2" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1295102-influence-catalyst-synthesis-method-selective-catalytic-reduction-scr-nh3-v2o5-wo3-tio2-catalysts" itemprop="url">Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH <sub>3</sub> with V <sub>2</sub>O <sub>5</sub>-WO <sub>3</sub>/TiO <sub>2</sub> catalysts</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">He, Yuanyuan</span> ; <span class="author">Ford, Michael E.</span> ; <span class="author">Zhu, Minghui</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Applied Catalysis. B, Environmental</span> </span> </div> <div class="abstract">We compared the molecular structures, surface acidity and catalytic activity for NO/NH <sub>3</sub>/O <sub>2</sub> SCR of V <sub>2</sub>O <sub>5</sub>-WO <sub>3</sub>/TiO <sub>2</sub> catalysts for two different synthesis methods: co-precipitation of aqueous vanadium and tungsten oxide precursors with TiO(OH) <sub>2</sub> and by incipient wetness impregnation of the aqueous precursors on a reference crystalline TiO <sub>2</sub> support (P25; primarily anatase phase). Bulk analysis by XRD showed that co-precipitation results in small and/or poorly ordered TiO <sub>2</sub>(anatase) particles and that VO <sub>x</sub> and WO <sub>x</sub> do not form solid solutions with the bulk titania lattice. Surface analysis of the co-precipitated catalyst by High Sensitivity-Low<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> Energy Ion Scattering (HS-LEIS) confirms that the VO <sub>x</sub> and WO <sub>x</sub> are surface segregated for the co-precipitated catalysts. In situ Raman and IR spectroscopy revealed that the vanadium and tungsten oxide components are present as surface mono-oxo O = VO <sub>3</sub> and O = WO <sub>4</sub> sites on the TiO <sub>2</sub> supports. Co-precipitation was shown for the first time to also form new mono-oxo surface VO <sub>4</sub> and WO <sub>4</sub> sites that appear to be anchored at surface defects of the TiO <sub>2</sub> support. IR analysis of chemisorbed ammonia showed the presence of both surface NH <sub>3</sub> <sup>*</sup> on Lewis acid sites and surface NH <sub>4</sub> <sup>+*</sup> on Brønsted acid sites. TPSR spectroscopy demonstrated that the specific SCR kinetics was controlled by the redox surface VO <sub>4</sub> species and that the surface kinetics was independent of TiO <sub>2</sub> synthesis method or presence of surface WO <sub>5</sub> sites. SCR reaction studies revealed that the surface WO5 sites possess minimal activity below ~325 °C and their primary function is to increase the adsorption capacity of ammonia. A relationship between the SCR activity and surface acidity was not found. The SCR reaction is controlled by the surface VO <sub>4</sub> sites that initiate the reaction at ~200 °C. The co-precipitated catalysts were always more active than the corresponding impregnated catalysts. Finally, we ascribe the higher activity of the co-precipitated catalysts to the presence of the new surface WO <sub>x</sub> sites associated surface defects on the TiO <sub>2</sub> support that increase the ammonia adsorption capacity.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 16<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1016/j.apcatb.2016.04.022" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1295102" data-product-type="Journal Article" data-product-subtype="AM" >10.1016/j.apcatb.2016.04.022</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1295102" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1295102" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="3" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1574300-amorphous-crystalline-tio2-nanoparticle-negative-electrodes-sodium-ion-batteries" itemprop="url">Amorphous and crystalline TiO <sub>2</sub> nanoparticle negative electrodes for sodium-ion batteries</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Deng, Changjian</span> ; <span class="author">Ma, Chunrong</span> ; <span class="author">Lau, Miu Lun</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Electrochimica Acta</span> </span> </div> <div class="abstract">Titanium dioxide (TiO <sub>2</sub>) is a promising negative electrode for sodium ion batteries (SIBS). Although TiO <sub>2</sub> materials with amorphous (A-TiO <sub>2</sub>) and single-phase crystalline structures (C-TiO <sub>2</sub>) have been <em>separately</em> explored, the study to compare the fundamental electrochemistry of A-TiO <sub>2</sub> and C-TiO <sub>2</sub> is limited. In this work, we investigated A-TiO <sub>2</sub> and C-TiO <sub>2</sub> nanoparticles with identical chemical composition and morphology. C-TiO <sub>2</sub> exhibits enhanced electrochemical performance than A-TiO <sub>2</sub> in terms of rate capability and cycle life. Cyclic voltammetry (CV) analysis suggests reversible Na ion insertion/extraction in C-TiO <sub>2</sub>. However, such process is irreversible in the<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> case of A-TiO <sub>2</sub>. The charge storage mechanisms in both samples were studied to show that diffusion-controlled intercalation process becomes significant in C-TiO <sub>2</sub> sample. The C-TiO <sub>2</sub> sample has a better Na <sup>+</sup> diffusivity measured through the galvanostatic intermittent titration technique (GITT) compared to A-TiO <sub>2</sub>, which corroborates well with the rate capability study. Furthermore, the evolution of local structure of the TiO <sub>2</sub> samples was analyzed by ex situ pair distribution function (PDF) to understand the variation in electrochemical properties. In conclusion, it reveals that the corner-shared Ti-Ti distance along Na ion diffusion pathway increases with the increase of crystallinity, leading to the expanded diffusion channels and therefore more active sites and faster diffusion.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1016/j.electacta.2019.134723" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1574300" data-product-type="Journal Article" data-product-subtype="AM" >10.1016/j.electacta.2019.134723</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="4" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1409492-high-fraction-brookite-films-from-amorphous-precursors" itemprop="url">High-fraction brookite films from amorphous precursors</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Haggerty, James E. S.</span> ; <span class="author">Schelhas, Laura T.</span> ; <span class="author">Kitchaev, Daniil A.</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Scientific Reports</span> </span> </div> <div class="abstract">Structure-specific synthesis processes are of key importance to the growth of polymorphic functional compounds such as TiO <sub>2</sub>, where material properties strongly depend on structure as well as chemistry. The robust growth of the brookite polymorph of TiO <sub>2</sub>, a promising photocatalyst, has been difficult in both powder and thin-film forms due to the disparity of reported synthesis techniques, their highly specific nature, and lack of mechanistic understanding. In this work, we report the growth of high-fraction (~95%) brookite thin films prepared by annealing amorphous titania precursor films deposited by pulsed laser deposition. We characterize the crystallization process, eliminating the<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> previously suggested roles of substrate templating and Na helper ions in driving brookite formation. Instead, we link phase selection directly to film thickness, offering a novel, generalizable route to brookite growth that does not rely on the presence of extraneous elements or particular lattice-matched substrates. In addition to providing a new synthesis route to brookite thin films, our results take a step towards resolving the problem of phase selection in TiO <sub>2</sub> growth, contributing to the further development of this promising functional material.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 1<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1038/s41598-017-15364-y" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1409492" data-product-type="Journal Article" data-product-subtype="AM" >10.1038/s41598-017-15364-y</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1409492" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1409492" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> </ul> </aside> </div> </section> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a class="tab-nav disabled" data-tab="related" style="color: #636c72 !important; opacity: 1;"><span class="fa fa-angle-right"></span> Similar Records</a></li> </ul> </div> </div> </section> </div></div> </div> </div> </section> <footer class="" style="background-color:#f9f9f9; /* padding-top: 0.5rem; */"> <div class="footer-minor"> <div class="container"> <hr class="footer-separator" /> <div class="text-center" style="margin-top:1.25rem;"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list" id="footer-org-menu"> <li class="pure-menu-item"> <a href="https://energy.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-us-doe-min" alt="U.S. Department of Energy" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.energy.gov/science/office-science" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-office-of-science-min" alt="Office of Science" /> </a> </li> <li class="pure-menu-item"> <a href="/"> <img src="" class="sprite sprite-footer-osti-min" alt="Office of Scientific and Technical Information" /> </a> </li> </ul> </div> </div> <div class="text-center small" style="margin-top:0.5em;margin-bottom:2.0rem;"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list"> <li class="pure-menu-item"><a href="/disclaim" class="pure-menu-link"><span class="fa fa-institution"></span> Website Policies <span class="hidden-xs">/ Important Links</span></a></li> <li class="pure-menu-item"><a href="/pages/contact" class="pure-menu-link"><span class="fa fa-comments-o"></span> Contact Us</a></li> <li class="d-block d-md-none"></li> <li class="pure-menu-item"><a href="https://www.facebook.com/ostigov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-facebook" style=""></span></a></li> <li class="pure-menu-item"><a href="https://twitter.com/OSTIgov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-twitter" style=""></span></a></li> <li class="pure-menu-item"><a href="https://www.youtube.com/user/ostigov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-youtube-play" style=""></span></a></li> </ul> </div> </div> </div> </div> </footer> <link href="/pages/css/pages.fonts.200113.2012.css" rel="stylesheet"> <script src="/pages/js/pages.200113.2012.js"></script><noscript></noscript> <script defer src="/pages/js/pages.biblio.200113.2012.js"></script><noscript></noscript> <script defer src="/pages/js/lity.js"></script><noscript></noscript><script async type="text/javascript" src="/pages/js/Universal-Federated-Analytics-Min.js?agency=DOE" id="_fed_an_ua_tag"></script><noscript></noscript></body> <!-- DOE PAGES v.200113.2012 --> </html>