DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Separating radiative forcing by aerosol–cloud interactions and rapid cloud adjustments in the ECHAM–HAMMOZ aerosol–climate model using the method of partial radiative perturbations

Abstract

Using the method of offline radiative transfer modeling within the partial radiative perturbation (PRP) approach, the effective radiative forcing by aerosol–cloud interactions (ERFaci) in the ECHAM–HAMMOZ aerosol climate model is decomposed into a radiative forcing by anthropogenic cloud droplet number change and adjustments of the liquid water path and cloud fraction.The simulated radiative forcing by anthropogenic cloud droplet number change and liquid water path adjustment are of approximately equal magnitude at –0.52 and –0.53 W m–2, respectively, while the cloud-fraction adjustment is somewhat weaker at –0.31 W m–2 (constituting 38 %, 39 %, and 23 %of the total ERFaci, respectively); geographically, all three ERFaci components in the simulation peak over China, the subtropical eastern ocean boundaries,the northern Atlantic and Pacific oceans, Europe, and eastern North America (in order of prominence). Spatial correlations indicate that the temporal-mean liquid water path adjustment is proportional to the temporal-mean radiative forcing, while the relationship between cloud-fraction adjustment and radiative forcing is less direct. While the estimate of warm-cloud ERFaci is relatively insensitive to the treatment of ice and mixed-phase cloud overlying warm cloud, there are indications that more restrictive treatments of ice in the column result in a low bias in the estimated magnitudemore » of the liquid water path adjustment and a high bias in the estimated magnitude of the droplet number forcing. Since the present work is the first PRP decomposition of the aerosol effective radiative forcing into radiative forcing and rapid cloud adjustments, idealized experiments are conducted to provide evidence that the PRP results are accurate. The experiments show that using low-frequency(daily or monthly) time-averaged model output of the cloud property fields underestimates the ERF, but 3-hourly mean output is sufficiently frequent.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [3]; ORCiD logo [3]
  1. Univ. Leipzig, Leipzig (Germany); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. Imperial College London, London (United Kingdom)
  3. Univ. Leipzig, Leipzig (Germany)
  4. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1580593
Report Number(s):
PNNL-SA-140892
Journal ID: ISSN 1680-7324
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 19; Journal Issue: 24; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Mülmenstädt, Johannes, Gryspeerdt, Edward, Salzmann, Marc, Ma, Po -Lun, Dipu, Sudhakar, and Quaas, Johannes. Separating radiative forcing by aerosol–cloud interactions and rapid cloud adjustments in the ECHAM–HAMMOZ aerosol–climate model using the method of partial radiative perturbations. United States: N. p., 2019. Web. doi:10.5194/acp-19-15415-2019.
Mülmenstädt, Johannes, Gryspeerdt, Edward, Salzmann, Marc, Ma, Po -Lun, Dipu, Sudhakar, & Quaas, Johannes. Separating radiative forcing by aerosol–cloud interactions and rapid cloud adjustments in the ECHAM–HAMMOZ aerosol–climate model using the method of partial radiative perturbations. United States. https://doi.org/10.5194/acp-19-15415-2019
Mülmenstädt, Johannes, Gryspeerdt, Edward, Salzmann, Marc, Ma, Po -Lun, Dipu, Sudhakar, and Quaas, Johannes. Tue . "Separating radiative forcing by aerosol–cloud interactions and rapid cloud adjustments in the ECHAM–HAMMOZ aerosol–climate model using the method of partial radiative perturbations". United States. https://doi.org/10.5194/acp-19-15415-2019. https://www.osti.gov/servlets/purl/1580593.
@article{osti_1580593,
title = {Separating radiative forcing by aerosol–cloud interactions and rapid cloud adjustments in the ECHAM–HAMMOZ aerosol–climate model using the method of partial radiative perturbations},
author = {Mülmenstädt, Johannes and Gryspeerdt, Edward and Salzmann, Marc and Ma, Po -Lun and Dipu, Sudhakar and Quaas, Johannes},
abstractNote = {Using the method of offline radiative transfer modeling within the partial radiative perturbation (PRP) approach, the effective radiative forcing by aerosol–cloud interactions (ERFaci) in the ECHAM–HAMMOZ aerosol climate model is decomposed into a radiative forcing by anthropogenic cloud droplet number change and adjustments of the liquid water path and cloud fraction.The simulated radiative forcing by anthropogenic cloud droplet number change and liquid water path adjustment are of approximately equal magnitude at –0.52 and –0.53 W m–2, respectively, while the cloud-fraction adjustment is somewhat weaker at –0.31 W m–2 (constituting 38 %, 39 %, and 23 %of the total ERFaci, respectively); geographically, all three ERFaci components in the simulation peak over China, the subtropical eastern ocean boundaries,the northern Atlantic and Pacific oceans, Europe, and eastern North America (in order of prominence). Spatial correlations indicate that the temporal-mean liquid water path adjustment is proportional to the temporal-mean radiative forcing, while the relationship between cloud-fraction adjustment and radiative forcing is less direct. While the estimate of warm-cloud ERFaci is relatively insensitive to the treatment of ice and mixed-phase cloud overlying warm cloud, there are indications that more restrictive treatments of ice in the column result in a low bias in the estimated magnitude of the liquid water path adjustment and a high bias in the estimated magnitude of the droplet number forcing. Since the present work is the first PRP decomposition of the aerosol effective radiative forcing into radiative forcing and rapid cloud adjustments, idealized experiments are conducted to provide evidence that the PRP results are accurate. The experiments show that using low-frequency(daily or monthly) time-averaged model output of the cloud property fields underestimates the ERF, but 3-hourly mean output is sufficiently frequent.},
doi = {10.5194/acp-19-15415-2019},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 24,
volume = 19,
place = {United States},
year = {Tue Dec 17 00:00:00 EST 2019},
month = {Tue Dec 17 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Assessment of simulated aerosol effective radiative forcings in the terrestrial spectrum: AEROSOL TERRESTRIAL EFFECTIVE FORCING
journal, January 2017

  • Heyn, Irene; Block, Karoline; Mülmenstädt, Johannes
  • Geophysical Research Letters, Vol. 44, Issue 2
  • DOI: 10.1002/2016GL071975

Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM
journal, January 2007

  • Lohmann, U.; Stier, P.; Hoose, C.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 13
  • DOI: 10.5194/acp-7-3425-2007

The Radiative Forcing of Aerosol–Cloud Interactions in Liquid Clouds: Wrestling and Embracing Uncertainty
journal, February 2018


A study of general circulation model climate feedbacks determined from perturbed sea surface temperature experiments
journal, August 1997

  • Colman, R. A.; McAvaney, B. J.
  • Journal of Geophysical Research: Atmospheres, Vol. 102, Issue D16
  • DOI: 10.1029/97JD00206

Bounding global aerosol radiative forcing of climate change
journal, November 2019


A comparison of climate feedbacks in general circulation models
journal, March 2003


Satellite-based estimate of the direct and indirect aerosol climate forcing: SATELLITE-ESTIMATE OF AEROSOL FORCINGS
journal, March 2008

  • Quaas, Johannes; Boucher, Olivier; Bellouin, Nicolas
  • Journal of Geophysical Research: Atmospheres, Vol. 113, Issue D5
  • DOI: 10.1029/2007JD008962

Model intercomparison of indirect aerosol effects
journal, January 2006

  • Penner, J. E.; Quaas, J.; Storelvmo, T.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 11
  • DOI: 10.5194/acp-6-3391-2006

Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability
journal, February 2016

  • Ghan, Steven; Wang, Minghuai; Zhang, Shipeng
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 21
  • DOI: 10.1073/pnas.1514036113

Aerosol radiative effects with MACv2
journal, January 2019


Constraining the aerosol influence on cloud fraction: AEROSOLS AND CLOUD FRACTION
journal, April 2016

  • Gryspeerdt, E.; Quaas, J.; Bellouin, N.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 7
  • DOI: 10.1002/2015JD023744

The impact of humidity above stratiform clouds on indirect aerosol climate forcing
journal, December 2004

  • Ackerman, Andrew S.; Kirkpatrick, Michael P.; Stevens, David E.
  • Nature, Vol. 432, Issue 7020
  • DOI: 10.1038/nature03174

The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations
journal, January 2012

  • Zhang, K.; O'Donnell, D.; Kazil, J.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 19
  • DOI: 10.5194/acp-12-8911-2012

Aerosols, Cloud Microphysics, and Fractional Cloudiness
journal, September 1989


Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests
journal, January 2010

  • Salzmann, M.; Ming, Y.; Golaz, J. -C.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 16
  • DOI: 10.5194/acp-10-8037-2010

Aerosol effects on stratocumulus water paths in a PDF-based parameterization: FULL LWP RESPONSES IN MVD PDFs
journal, September 2011

  • Guo, H.; Golaz, J. -C.; Donner, L. J.
  • Geophysical Research Letters, Vol. 38, Issue 17
  • DOI: 10.1029/2011GL048611

The source of discrepancies in aerosol–cloud–precipitation interactions between GCM and A-Train retrievals
journal, January 2016

  • Michibata, Takuro; Suzuki, Kentaroh; Sato, Yousuke
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 23
  • DOI: 10.5194/acp-16-15413-2016

Total aerosol effect: radiative forcing or radiative flux perturbation?
journal, January 2010

  • Lohmann, U.; Rotstayn, L.; Storelvmo, T.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 7
  • DOI: 10.5194/acp-10-3235-2010

Aerosol size-dependent below-cloud scavenging by rain and snow in the ECHAM5-HAM
journal, January 2009

  • Croft, B.; Lohmann, U.; Martin, R. V.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 14
  • DOI: 10.5194/acp-9-4653-2009

Multisensor satellite observations of aerosol effects on warm clouds
journal, January 2008

  • Lebsock, Matthew D.; Stephens, Graeme L.; Kummerow, Christian
  • Journal of Geophysical Research, Vol. 113, Issue D15
  • DOI: 10.1029/2008JD009876

Sensitivity studies of different aerosol indirect effects in mixed-phase clouds
journal, January 2009


Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models: Estimation of Semiparametric Generalized Linear Models
journal, September 2010


Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application
journal, January 2010

  • Lamarque, J. -F.; Bond, T. C.; Eyring, V.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 15
  • DOI: 10.5194/acp-10-7017-2010

The aerosol-climate model ECHAM5-HAM
journal, January 2005

  • Stier, P.; Feichter, J.; Kinne, S.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 4
  • DOI: 10.5194/acp-5-1125-2005

The ERA-Interim reanalysis: configuration and performance of the data assimilation system
journal, April 2011

  • Dee, D. P.; Uppala, S. M.; Simmons, A. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue 656
  • DOI: 10.1002/qj.828

Atmospheric component of the MPI-M Earth System Model: ECHAM6: ECHAM6
journal, April 2013

  • Stevens, Bjorn; Giorgetta, Marco; Esch, Monika
  • Journal of Advances in Modeling Earth Systems, Vol. 5, Issue 2
  • DOI: 10.1002/jame.20015

Understanding the drivers of marine liquid-water cloud occurrence and properties with global observations using neural networks
journal, January 2017

  • Andersen, Hendrik; Cermak, Jan; Fuchs, Julia
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 15
  • DOI: 10.5194/acp-17-9535-2017

The global aerosol‐cloud first indirect effect estimated using MODIS, MERRA, and AeroCom
journal, February 2017

  • McCoy, D. T.; Bender, F. A. ‐M.; Mohrmann, J. K. C.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 3
  • DOI: 10.1002/2016JD026141

Impact of the representation of marine stratocumulus clouds on the anthropogenic aerosol effect
journal, January 2014


Why do general circulation models overestimate the aerosol cloud lifetime effect? A case study comparing CAM5 and a CRM
journal, January 2017

  • Zhou, Cheng; Penner, Joyce E.
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 1
  • DOI: 10.5194/acp-17-21-2017

Influences of in-cloud aerosol scavenging parameterizations on aerosol concentrations and wet deposition in ECHAM5-HAM
journal, January 2010

  • Croft, B.; Lohmann, U.; Martin, R. V.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 4
  • DOI: 10.5194/acp-10-1511-2010

Constraining the instantaneous aerosol influence on cloud albedo
journal, April 2017

  • Gryspeerdt, Edward; Quaas, Johannes; Ferrachat, Sylvaine
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 19
  • DOI: 10.1073/pnas.1617765114

Rapid Adjustments Cause Weak Surface Temperature Response to Increased Black Carbon Concentrations: Rapid Adjustments Cause Weak BC Response
journal, November 2017

  • Stjern, Camilla Weum; Samset, Bjørn Hallvard; Myhre, Gunnar
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 21
  • DOI: 10.1002/2017JD027326

Estimating Shortwave Radiative Forcing and Response in Climate Models
journal, June 2007

  • Taylor, K. E.; Crucifix, M.; Braconnot, P.
  • Journal of Climate, Vol. 20, Issue 11
  • DOI: 10.1175/JCLI4143.1

Geographically coherent patterns of albedo enhancement and suppression associated with aerosol sources and sinks
journal, April 2015

  • Engström, Anders; Bender, Frida A. -M.; Charlson, Robert J.
  • Tellus B: Chemical and Physical Meteorology, Vol. 67, Issue 1
  • DOI: 10.3402/tellusb.v67.26442

Constraining the aerosol influence on cloud liquid water path
journal, January 2019

  • Gryspeerdt, Edward; Goren, Tom; Sourdeval, Odran
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 8
  • DOI: 10.5194/acp-19-5331-2019

Untangling aerosol effects on clouds and precipitation in a buffered system
journal, October 2009


Estimates of aerosol radiative forcing from the MACC re-analysis
journal, January 2013

  • Bellouin, N.; Quaas, J.; Morcrette, J. -J.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 4
  • DOI: 10.5194/acp-13-2045-2013

Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model
journal, January 2007

  • Kinnison, D. E.; Brasseur, G. P.; Walters, S.
  • Journal of Geophysical Research, Vol. 112, Issue D20
  • DOI: 10.1029/2006JD007879

Paths to accuracy for radiation parameterizations in atmospheric models: PATHS TO PARAMETERIZATION ACCURACY
journal, May 2013

  • Pincus, Robert; Stevens, Bjorn
  • Journal of Advances in Modeling Earth Systems, Vol. 5, Issue 2
  • DOI: 10.1002/jame.20027

Recommendations for diagnosing effective radiative forcing from climate models for CMIP6: RECOMMENDED EFFECTIVE RADIATIVE FORCING
journal, October 2016

  • Forster, Piers M.; Richardson, Thomas; Maycock, Amanda C.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 20
  • DOI: 10.1002/2016JD025320

The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6
journal, January 2016

  • Pincus, Robert; Forster, Piers M.; Stevens, Bjorn
  • Geoscientific Model Development, Vol. 9, Issue 9
  • DOI: 10.5194/gmd-9-3447-2016

Clouds and Aerosols
book, June 2014


Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model
journal, June 1996


Technical Note: Estimating aerosol effects on cloud radiative forcing
journal, January 2013


Unveiling aerosol–cloud interactions – Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate
journal, January 2017

  • Christensen, Matthew W.; Neubauer, David; Poulsen, Caroline A.
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 21
  • DOI: 10.5194/acp-17-13151-2017

Technical Note: On the use of nudging for aerosol–climate model intercomparison studies
journal, January 2014


Sensitivity to deliberate sea salt seeding of marine clouds – observations and model simulations
journal, January 2012

  • Alterskjær, K.; Kristjánsson, J. E.; Seland, Ø.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 5
  • DOI: 10.5194/acp-12-2795-2012

MAC-v1: A new global aerosol climatology for climate studies: MAC-v1 for Climate Studies
journal, October 2013

  • Kinne, Stefan; O'Donnel, Declan; Stier, Philip
  • Journal of Advances in Modeling Earth Systems, Vol. 5, Issue 4
  • DOI: 10.1002/jame.20035

Constraining the influence of natural variability to improve estimates of global aerosol indirect effects in a nudged version of the Community Atmosphere Model 5: ESTIMATES OF AEROSOL INDIRECT EFFECTS
journal, December 2012

  • Kooperman, Gabriel J.; Pritchard, Michael S.; Ghan, Steven J.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D23
  • DOI: 10.1029/2012JD018588

Assessment of different metrics for physical climate feedbacks
journal, April 2013


Quantifying components of aerosol-cloud-radiation interactions in climate models
journal, June 2014

  • Zelinka, Mark D.; Andrews, Timothy; Forster, Piers M.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 12
  • DOI: 10.1002/2014JD021710

Satellite-based estimate of global aerosol–cloud radiative forcing by marine warm clouds
journal, August 2014

  • Chen, Yi-Chun; Christensen, Matthew W.; Stephens, Graeme L.
  • Nature Geoscience, Vol. 7, Issue 9
  • DOI: 10.1038/ngeo2214

Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application
journal, January 2010

  • Lamarque, J. -F.; Bond, T. C.; Eyring, V.
  • Atmospheric Chemistry and Physics Discussions, Vol. 10, Issue 2
  • DOI: 10.5194/acpd-10-4963-2010

Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests
journal, January 2010

  • Salzmann, M.; Ming, Y.; Golaz, J. -C.
  • Atmospheric Chemistry and Physics Discussions, Vol. 10, Issue 3
  • DOI: 10.5194/acpd-10-6375-2010

The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations
journal, January 2012

  • Zhang, K.; O'Donnell, D.; Kazil, J.
  • Atmospheric Chemistry and Physics Discussions, Vol. 12, Issue 3
  • DOI: 10.5194/acpd-12-7545-2012

Impact of the representation of marine stratocumulus clouds on the anthropogenic aerosol effect
text, January 2014


Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM
text, January 2007


Bounding Global Aerosol Radiative Forcing of Climate Change
text, January 2020


Total aerosol effect: radiative forcing or radiative flux perturbation?
text, January 2010


Aerosol size-dependent below-cloud scavenging by rain and snow in the ECHAM5-HAM
text, January 2009


Surprising similarities in model and observational aerosol radiative forcing estimates
text, January 2020


Technical note: On the use of nudging for aerosol-climate model intercomparison studies
text, January 2014


Surprising similarities in model and observational aerosol radiative forcing estimates
journal, January 2020

  • Gryspeerdt, Edward; Mülmenstädt, Johannes; Gettelman, Andrew
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 1
  • DOI: 10.5194/acp-20-613-2020

Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM
journal, January 2007

  • Lohmann, U.; Stier, P.; Hoose, C.
  • Atmospheric Chemistry and Physics Discussions, Vol. 7, Issue 2
  • DOI: 10.5194/acpd-7-3719-2007