skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on November 22, 2020

Title: Capture of nitrogen dioxide and conversion to nitric acid in a porous metal–organic framework

Abstract

Air pollution by nitrogen oxides, NO x, is a major problem, and new capture and abatement technologies are urgently required. Here, we report a metal-organic framework (Manchester Framework Material 520 (MFM-520)) that can efficiently confine dimers of NO 2, which results in a high adsorption capacity of 4.2 mmol g -1 (298 K, 0.01 bar) with full reversibility and no loss of capacity over 125 cycles. Treatment of NO 2@MFM-520 with water in air leads to a quantitative conversion of the captured NO 2 into HNO 3, an important feedstock for fertilizer production, and fully regenerates MFM-520. Here, the confinement of N 2O 4 inside nanopores was established at a molecular level, and the dynamic breakthrough experiments using both dry and humid NO 2 gas streams verify the excellent stability and selectivity of MFM-520 and confirm its potential for precious-metal-free deNO x technologies.

Authors:
 [1];  [1];  [1];  [2];  [3];  [1]; ORCiD logo [1]; ORCiD logo [4]; ORCiD logo [4];  [3]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of Manchester, Manchester (United Kingdom)
  2. Univ. of Manchester, Manchester (United Kingdom); International Tomography Centre SB RAS and Novosibirsk State Univ., Novosibirsk (Russia)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1580418
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nature Chemistry
Additional Journal Information:
Journal Volume: 11; Journal Issue: 12; Journal ID: ISSN 1755-4330
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Li, Jiangnan, Han, Xue, Zhang, Xinran, Sheveleva, Alena M., Cheng, Yongqiang, Tuna, Floriana, McInnes, Eric J. L., McCormick McPherson, Laura J., Teat, Simon J., Daemen, Luke L., Ramirez-Cuesta, Anibal J., Schröder, Martin, and Yang, Sihai. Capture of nitrogen dioxide and conversion to nitric acid in a porous metal–organic framework. United States: N. p., 2019. Web. doi:10.1038/s41557-019-0356-0.
Li, Jiangnan, Han, Xue, Zhang, Xinran, Sheveleva, Alena M., Cheng, Yongqiang, Tuna, Floriana, McInnes, Eric J. L., McCormick McPherson, Laura J., Teat, Simon J., Daemen, Luke L., Ramirez-Cuesta, Anibal J., Schröder, Martin, & Yang, Sihai. Capture of nitrogen dioxide and conversion to nitric acid in a porous metal–organic framework. United States. doi:10.1038/s41557-019-0356-0.
Li, Jiangnan, Han, Xue, Zhang, Xinran, Sheveleva, Alena M., Cheng, Yongqiang, Tuna, Floriana, McInnes, Eric J. L., McCormick McPherson, Laura J., Teat, Simon J., Daemen, Luke L., Ramirez-Cuesta, Anibal J., Schröder, Martin, and Yang, Sihai. Fri . "Capture of nitrogen dioxide and conversion to nitric acid in a porous metal–organic framework". United States. doi:10.1038/s41557-019-0356-0.
@article{osti_1580418,
title = {Capture of nitrogen dioxide and conversion to nitric acid in a porous metal–organic framework},
author = {Li, Jiangnan and Han, Xue and Zhang, Xinran and Sheveleva, Alena M. and Cheng, Yongqiang and Tuna, Floriana and McInnes, Eric J. L. and McCormick McPherson, Laura J. and Teat, Simon J. and Daemen, Luke L. and Ramirez-Cuesta, Anibal J. and Schröder, Martin and Yang, Sihai},
abstractNote = {Air pollution by nitrogen oxides, NOx, is a major problem, and new capture and abatement technologies are urgently required. Here, we report a metal-organic framework (Manchester Framework Material 520 (MFM-520)) that can efficiently confine dimers of NO2, which results in a high adsorption capacity of 4.2 mmol g-1 (298 K, 0.01 bar) with full reversibility and no loss of capacity over 125 cycles. Treatment of NO2@MFM-520 with water in air leads to a quantitative conversion of the captured NO2 into HNO3, an important feedstock for fertilizer production, and fully regenerates MFM-520. Here, the confinement of N2O4 inside nanopores was established at a molecular level, and the dynamic breakthrough experiments using both dry and humid NO2 gas streams verify the excellent stability and selectivity of MFM-520 and confirm its potential for precious-metal-free deNOx technologies.},
doi = {10.1038/s41557-019-0356-0},
journal = {Nature Chemistry},
number = 12,
volume = 11,
place = {United States},
year = {2019},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on November 22, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Thermodynamics of mixed-gas adsorption
journal, January 1965


Reversible adsorption of nitrogen dioxide within a robust porous metal–organic framework
journal, June 2018


High winter ozone pollution from carbonyl photolysis in an oil and gas basin
journal, October 2014

  • Edwards, Peter M.; Brown, Steven S.; Roberts, James M.
  • Nature, Vol. 514, Issue 7522
  • DOI: 10.1038/nature13767

Eco-friendly selection of ship emissions reduction strategies with emphasis on SOx and NOx emissions
journal, September 2014

  • Seddiek, Ibrahim S.; Elgohary, Mohamed M.
  • International Journal of Naval Architecture and Ocean Engineering, Vol. 6, Issue 3
  • DOI: 10.2478/IJNAOE-2013-0209

Soil biodiversity and human health
journal, November 2015

  • Wall, Diana H.; Nielsen, Uffe N.; Six, Johan
  • Nature, Vol. 528, Issue 7580
  • DOI: 10.1038/nature15744

Dissociation of dinitrogen tetroxide in the gas phase
journal, January 1970

  • Vosper, A. J.
  • Journal of the Chemical Society A: Inorganic, Physical, Theoretical
  • DOI: 10.1039/j19700000625

Denitrification techniques for biomass combustion
journal, February 2018

  • Mladenović, Milica; Paprika, Milijana; Marinković, Ana
  • Renewable and Sustainable Energy Reviews, Vol. 82
  • DOI: 10.1016/j.rser.2017.10.054

Reactive adsorption of acidic gases on MOF/graphite oxide composites
journal, May 2012


Cation Movements during Dehydration and NO 2 Desorption in a Ba–Y,FAU Zeolite: An in Situ Time-Resolved X-ray Diffraction Study
journal, February 2013

  • Wang, Xianqin; Hanson, Jonathan C.; Kwak, Ja Hun
  • The Journal of Physical Chemistry C, Vol. 117, Issue 8
  • DOI: 10.1021/jp308307m

Regional and Global Emissions of Air Pollutants: Recent Trends and Future Scenarios
journal, October 2013


Reactive Adsorption of NO 2 on Copper-Based Metal−Organic Framework and Graphite Oxide/Metal−Organic Framework Composites
journal, November 2010

  • Levasseur, Benoit; Petit, Camille; Bandosz, Teresa J.
  • ACS Applied Materials & Interfaces, Vol. 2, Issue 12
  • DOI: 10.1021/am100790v

N2O4: change of dimensions with temperature
journal, January 1966

  • Cartwright, B. S.; Robertson, J. H.
  • Chemical Communications (London), Issue 3
  • DOI: 10.1039/c19660000082

China tackles the health effects of air pollution
journal, December 2013


Historic and futuristic review of electron beam technology for the treatment of SO2 and NOx in flue gas
journal, January 2019


The impact of light and heavy hydrocarbons on the NH3-SCR activity of commercial Cu- and Fe-zeolite catalysts
journal, January 2019


Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship
journal, January 2017

  • Adil, Karim; Belmabkhout, Youssef; Pillai, Renjith S.
  • Chemical Society Reviews, Vol. 46, Issue 11
  • DOI: 10.1039/C7CS00153C

The dissociation of dinitrogen tetroxide in the liquid phase
journal, January 1970

  • Vosper, A. J.
  • Journal of the Chemical Society A: Inorganic, Physical, Theoretical
  • DOI: 10.1039/j19700002191

Mechanistic study on adsorption and reduction of NO2 over activated carbon fibers
journal, January 2002


Capture of pure toxic gases through porous materials from molecular simulations
journal, February 2018


A Porous Framework Polymer Based on a Zinc(II) 4,4‘-Bipyridine-2,6,2‘,6‘-tetracarboxylate:  Synthesis, Structure, and “Zeolite-Like” Behaviors
journal, August 2006

  • Lin, Xiang; Blake, Alexander J.; Wilson, Claire
  • Journal of the American Chemical Society, Vol. 128, Issue 33
  • DOI: 10.1021/ja060946u

ESR study of the motional dynamics of NO2 adsorbed on Na-mordenite
journal, June 1996


Porous metal–organic frameworks as emerging sorbents for clean air
journal, February 2019


Adsorption of NO 2 on YSZ(111) and Oxygen-Enriched YSZ(111) Surfaces
journal, June 2013

  • Breedon, M.; Spencer, M. J. S.; Miura, N.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 24
  • DOI: 10.1021/jp310016r

Ce(III) Doped Zr-Based MOFs as Excellent NO 2 Adsorbents at Ambient Conditions
journal, October 2013

  • Ebrahim, Amani M.; Bandosz, Teresa J.
  • ACS Applied Materials & Interfaces, Vol. 5, Issue 21
  • DOI: 10.1021/am402305u

Adsorption equilibrium of nitrogen dioxide in porous materials
journal, January 2018

  • Matito-Martos, I.; Rahbari, A.; Martin-Calvo, A.
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 6
  • DOI: 10.1039/C7CP08017D

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Beyond fossil fuel–driven nitrogen transformations
journal, May 2018

  • Chen, Jingguang G.; Crooks, Richard M.; Seefeldt, Lance C.
  • Science, Vol. 360, Issue 6391
  • DOI: 10.1126/science.aar6611

Molecular dynamics simulation of liquid N2O4⇌2NO2 by orientation-sensitive pairwise potential. I. Chemical equilibrium
journal, December 2001

  • Katō, Toshiko; Hayashi, Soichi; Machida, Katsunosuke
  • The Journal of Chemical Physics, Vol. 115, Issue 23
  • DOI: 10.1063/1.1417507