skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Using in situ and operando methods to characterize phase changes in charged lithium nickel cobalt aluminum oxide cathode materials

Abstract

Lithium ion batteries have been extensively explored in recent decades in order to improve their electrochemical performance, address safety concerns, and reduce costs in larger-scale applications. Electrode materials are key components which govern the properties of the battery at the system level. Cathode materials are of particular importance as they are a limiting factor for achieving high energy density. Lithium nickel cobalt aluminum oxide (LiNi0.8Co0.15Al0.05O2, referred to subsequently as NCA) is one of successful cathode materials since it can deliver higher capacity than other cathode materials such as lithium cobalt oxide or lithium iron phosphate. However, structural instabilities that occur NCA during charging or at high temperatures is believed to be the primary reason for performance degradation as well as a possible safety threat. Furthermore, understanding the structural evolution that occurs in NCA is of importance to acquire fundamental insights for taking full advantage of the high capacity of NCA materials. Beyond static information, in situ and operando characterization approaches allow us to observe structural changes under external stimulus or in a working condition, providing a deeper understanding of the routes by which structure evolve. In this review, we will describe the use of both in situ and operando characterizationmore » performed with both synchrotron X-ray based techniques and advanced electron microscopy, as the combination of these techniques have been shown to be particularly effective at providing structural information at complementary length scales.« less

Authors:
ORCiD logo [1];  [2]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States)
  2. Univ. of Pennsylvania, Philadelphia, PA (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1580237
Report Number(s):
BNL-212466-2019-JAAM
Journal ID: ISSN 0022-3727
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physics. D, Applied Physics
Additional Journal Information:
Journal Volume: 53; Journal Issue: 11; Journal ID: ISSN 0022-3727
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Hwang, Sooyeon, and Stach, Eric. Using in situ and operando methods to characterize phase changes in charged lithium nickel cobalt aluminum oxide cathode materials. United States: N. p., 2019. Web. doi:10.1088/1361-6463/ab60ea.
Hwang, Sooyeon, & Stach, Eric. Using in situ and operando methods to characterize phase changes in charged lithium nickel cobalt aluminum oxide cathode materials. United States. doi:https://doi.org/10.1088/1361-6463/ab60ea
Hwang, Sooyeon, and Stach, Eric. Wed . "Using in situ and operando methods to characterize phase changes in charged lithium nickel cobalt aluminum oxide cathode materials". United States. doi:https://doi.org/10.1088/1361-6463/ab60ea. https://www.osti.gov/servlets/purl/1580237.
@article{osti_1580237,
title = {Using in situ and operando methods to characterize phase changes in charged lithium nickel cobalt aluminum oxide cathode materials},
author = {Hwang, Sooyeon and Stach, Eric},
abstractNote = {Lithium ion batteries have been extensively explored in recent decades in order to improve their electrochemical performance, address safety concerns, and reduce costs in larger-scale applications. Electrode materials are key components which govern the properties of the battery at the system level. Cathode materials are of particular importance as they are a limiting factor for achieving high energy density. Lithium nickel cobalt aluminum oxide (LiNi0.8Co0.15Al0.05O2, referred to subsequently as NCA) is one of successful cathode materials since it can deliver higher capacity than other cathode materials such as lithium cobalt oxide or lithium iron phosphate. However, structural instabilities that occur NCA during charging or at high temperatures is believed to be the primary reason for performance degradation as well as a possible safety threat. Furthermore, understanding the structural evolution that occurs in NCA is of importance to acquire fundamental insights for taking full advantage of the high capacity of NCA materials. Beyond static information, in situ and operando characterization approaches allow us to observe structural changes under external stimulus or in a working condition, providing a deeper understanding of the routes by which structure evolve. In this review, we will describe the use of both in situ and operando characterization performed with both synchrotron X-ray based techniques and advanced electron microscopy, as the combination of these techniques have been shown to be particularly effective at providing structural information at complementary length scales.},
doi = {10.1088/1361-6463/ab60ea},
journal = {Journal of Physics. D, Applied Physics},
number = 11,
volume = 53,
place = {United States},
year = {2019},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system
journal, August 1994


Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

The cycling properties of the LixNi1−yCoyO2 electrode
journal, April 1993


Electrochemical Properties and Thermal Stability of Li[sub a]Ni[sub 1−x]CO[sub x]O[sub 2] Cathode Materials
journal, January 2000

  • Cho, Jaephil; Jung, HyunSook; Park, YoungChul
  • Journal of The Electrochemical Society, Vol. 147, Issue 1
  • DOI: 10.1149/1.1393137

Effects of aluminum on the structural and electrochemical properties of LiNiO2
journal, April 2003


Structural and electrochemical properties of LiNi0.70Co0.15Al0.15O2
journal, May 2003


Structural and electrochemical characteristics of Co and Al co-doped lithium nickelate cathode materials for lithium-ion batteries
journal, August 2004


A New High Power LiNi 0.81 Co 0.1 Al 0.09 O 2 Cathode Material for Lithium-Ion Batteries
journal, April 2014


Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries
journal, April 2004


Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives
journal, December 2016


Performance and cost of materials for lithium-based rechargeable automotive batteries
journal, April 2018


Intergranular Cracking as a Major Cause of Long-Term Capacity Fading of Layered Cathodes
journal, May 2017


Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells
journal, August 2002


Microscopy and Spectroscopy of Lithium Nickel Oxide-Based Particles Used in High Power Lithium-Ion Cells
journal, January 2003

  • Abraham, D. P.; Twesten, R. D.; Balasubramanian, M.
  • Journal of The Electrochemical Society, Vol. 150, Issue 11
  • DOI: 10.1149/1.1613291

Microstructural Changes in LiNi0.8Co0.15Al0.05O2 Positive Electrode Material during the First Cycle
journal, January 2011

  • Zheng, Shijian; Huang, Rong; Makimura, Yoshinari
  • Journal of The Electrochemical Society, Vol. 158, Issue 4
  • DOI: 10.1149/1.3544843

Surface Structure and High-Voltage Charge/Discharge Characteristics of Al-Oxide Coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 Cathodes
journal, January 2015

  • Yano, Akira; Aoyama, Shigeo; Shikano, Masahiro
  • Journal of The Electrochemical Society, Vol. 162, Issue 2
  • DOI: 10.1149/2.0131502jes

Understanding the Degradation Mechanisms of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode Material in Lithium Ion Batteries
journal, August 2013

  • Jung, Sung-Kyun; Gwon, Hyeokjo; Hong, Jihyun
  • Advanced Energy Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aenm.201300787

Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries
journal, January 2014

  • Lin, Feng; Nordlund, Dennis; Markus, Isaac M.
  • Energy & Environmental Science, Vol. 7, Issue 9
  • DOI: 10.1039/C4EE01400F

Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries
journal, December 2012

  • Gu, Meng; Belharouak, Ilias; Zheng, Jianming
  • ACS Nano, Vol. 7, Issue 1
  • DOI: 10.1021/nn305065u

Diagnostic Analysis of Electrodes from High-Power Lithium-Ion Cells Cycled under Different Conditions
journal, January 2004

  • Striebel, K. A.; Shim, J.; Cairns, E. J.
  • Journal of The Electrochemical Society, Vol. 151, Issue 6
  • DOI: 10.1149/1.1710514

Surface Characterization of Electrodes from High Power Lithium-Ion Batteries
journal, January 2002

  • Andersson, A. M.; Abraham, D. P.; Haasch, R.
  • Journal of The Electrochemical Society, Vol. 149, Issue 10
  • DOI: 10.1149/1.1505636

Capacity-Fading Mechanisms of LiNiO[sub 2]-Based Lithium-Ion Batteries
journal, January 2009

  • Muto, Shunsuke; Sasano, Yusuke; Tatsumi, Kazuyoshi
  • Journal of The Electrochemical Society, Vol. 156, Issue 5
  • DOI: 10.1149/1.3076137

Studies of local degradation phenomena in composite cathodes for lithium-ion batteries
journal, May 2007


Investigation of inorganic compounds on the surface of cathode materials using Li and O K-edge XANES
journal, December 2007


Review—Post-Mortem Analysis of Aged Lithium-Ion Batteries: Disassembly Methodology and Physico-Chemical Analysis Techniques
journal, January 2016

  • Waldmann, Thomas; Iturrondobeitia, Amaia; Kasper, Michael
  • Journal of The Electrochemical Society, Vol. 163, Issue 10
  • DOI: 10.1149/2.1211609jes

The Effect of Pre-Analysis Washing on the Surface Film of Graphite Electrodes
journal, July 2016


Application of Synchrotron Radiation Technologies to Electrode Materials for Li- and Na-Ion Batteries
journal, July 2017

  • Huang, Weifeng; Marcelli, Augusto; Xia, Dingguo
  • Advanced Energy Materials, Vol. 7, Issue 21
  • DOI: 10.1002/aenm.201700460

Study of Thermal Decomposition of Li 1-x (Ni 1/3 Mn 1/3 Co 1/3 ) 0.9 O 2 Using In-Situ High-Energy X-Ray Diffraction
journal, March 2013

  • Chen, Zonghai; Ren, Yang; Lee, Eungje
  • Advanced Energy Materials, Vol. 3, Issue 6
  • DOI: 10.1002/aenm.201201059

High-Rate Charging Induced Intermediate Phases and Structural Changes of Layer-Structured Cathode for Lithium-Ion Batteries
journal, August 2016

  • Zhou, Yong-Ning; Yue, Ji-Li; Hu, Enyuan
  • Advanced Energy Materials, Vol. 6, Issue 21
  • DOI: 10.1002/aenm.201600597

Dynamic Structural Changes at LiMn 2 O 4 /Electrolyte Interface during Lithium Battery Reaction
journal, November 2010

  • Hirayama, Masaaki; Ido, Hedekazu; Kim, KyungSu
  • Journal of the American Chemical Society, Vol. 132, Issue 43
  • DOI: 10.1021/ja105389t

Comprehensive Insights into the Structural and Chemical Changes in Mixed-Anion FeOF Electrodes by Using Operando PDF and NMR Spectroscopy
journal, March 2013

  • Wiaderek, Kamila M.; Borkiewicz, Olaf J.; Castillo-Martínez, Elizabeth
  • Journal of the American Chemical Society, Vol. 135, Issue 10
  • DOI: 10.1021/ja400229v

Conversion Reaction Mechanisms in Lithium Ion Batteries: Study of the Binary Metal Fluoride Electrodes
journal, November 2011

  • Wang, Feng; Robert, Rosa; Chernova, Natasha A.
  • Journal of the American Chemical Society, Vol. 133, Issue 46
  • DOI: 10.1021/ja206268a

First In Situ Observation of the LiCoO 2 Electrode/Electrolyte Interface by Total-Reflection X-ray Absorption Spectroscopy
journal, October 2012

  • Takamatsu, Daiko; Koyama, Yukinori; Orikasa, Yuki
  • Angewandte Chemie International Edition, Vol. 51, Issue 46
  • DOI: 10.1002/anie.201203910

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

Investigation of the Charge Compensation Mechanism on the Electrochemically Li-Ion Deintercalated Li 1 - x Co 1/3 Ni 1/3 Mn 1/3 O 2 Electrode System by Combination of Soft and Hard X-ray Absorption Spectroscopy
journal, December 2005

  • Yoon, Won-Sub; Balasubramanian, Mahalingam; Chung, Kyung Yoon
  • Journal of the American Chemical Society, Vol. 127, Issue 49
  • DOI: 10.1021/ja0530568

In situ x-ray absorption spectroscopic study of the Li[Ni1∕3Co1∕3Mn1∕3]O2 cathode material
journal, June 2005

  • Deb, Aniruddha; Bergmann, Uwe; Cramer, Stephen P.
  • Journal of Applied Physics, Vol. 97, Issue 11
  • DOI: 10.1063/1.1921328

3D analysis of a LiCoO2–Li(Ni1/3Mn1/3Co1/3)O2 Li-ion battery positive electrode using x-ray nano-tomography
journal, March 2013


Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles
journal, August 2016

  • Wang, Jiajun; Karen Chen-Wiegart, Yu-chen; Eng, Christopher
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12372

Nanoscale Morphological and Chemical Changes of High Voltage Lithium–Manganese Rich NMC Composite Cathodes with Cycling
journal, July 2014

  • Yang, Feifei; Liu, Yijin; Martha, Surendra K.
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl502090z

In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research
journal, July 2018


Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy
journal, February 2016

  • Nowack, Lea; Grolimund, Daniel; Samson, Vallerie
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep21479

Thermally-driven mesopore formation and oxygen release in delithiated NCA cathode particles
journal, January 2019

  • Besli, Münir M.; Shukla, Alpesh Khushalchand; Wei, Chenxi
  • Journal of Materials Chemistry A, Vol. 7, Issue 20
  • DOI: 10.1039/C9TA01720H

The AMPIX electrochemical cell: a versatile apparatus for in situ X-ray scattering and spectroscopic measurements
journal, November 2012

  • Borkiewicz, Olaf J.; Shyam, Badri; Wiaderek, Kamila M.
  • Journal of Applied Crystallography, Vol. 45, Issue 6
  • DOI: 10.1107/S0021889812042720

Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy
journal, October 2013

  • Liu, Xiaosong; Wang, Dongdong; Liu, Gao
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3568

Probing three-dimensional sodiation–desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography
journal, June 2015

  • Wang, Jiajun; Eng, Christopher; Chen-Wiegart, Yu-chen Karen
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8496

Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles
journal, August 2016


Atomic resolution of lithium ions in LiCoO2
journal, June 2003

  • Shao-Horn, Yang; Croguennec, Laurence; Delmas, Claude
  • Nature Materials, Vol. 2, Issue 7
  • DOI: 10.1038/nmat922

Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
journal, July 2013

  • Sathiya, M.; Rousse, G.; Ramesha, K.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3699

Nanoscale Zirconium-Abundant Surface Layers on Lithium- and Manganese-Rich Layered Oxides for High-Rate Lithium-Ion Batteries
journal, November 2017


Atomic Insight into the Layered/Spinel Phase Transformation in Charged LiNi 0.80 Co 0.15 Al 0.05 O 2 Cathode Particles
journal, January 2017

  • Zhang, Hanlei; Karki, Khim; Huang, Yiqing
  • The Journal of Physical Chemistry C, Vol. 121, Issue 3
  • DOI: 10.1021/acs.jpcc.6b10220

Conflicting Roles of Nickel in Controlling Cathode Performance in Lithium Ion Batteries
journal, September 2012

  • Gu, Meng; Belharouak, Ilias; Genc, Arda
  • Nano Letters, Vol. 12, Issue 10
  • DOI: 10.1021/nl302249v

Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study
journal, January 2011

  • Xu, Bo; Fell, Christopher R.; Chi, Miaofang
  • Energy & Environmental Science, Vol. 4, Issue 6
  • DOI: 10.1039/c1ee01131f

Origin of voltage decay in high-capacity layered oxide electrodes
journal, December 2014

  • Sathiya, M.; Abakumov, A. M.; Foix, D.
  • Nature Materials, Vol. 14, Issue 2
  • DOI: 10.1038/nmat4137

Tracking lithium transport and electrochemical reactions in nanoparticles
journal, January 2012

  • Wang, Feng; Yu, Hui-Chia; Chen, Min-Hua
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2185

Ni and Co Segregations on Selective Surface Facets and Rational Design of Layered Lithium Transition-Metal Oxide Cathodes
journal, February 2016

  • Yan, Pengfei; Zheng, Jianming; Zheng, Jiaxin
  • Advanced Energy Materials, Vol. 6, Issue 9
  • DOI: 10.1002/aenm.201502455

In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode
journal, December 2010


Multistep Lithiation of Tin Sulfide: An Investigation Using in Situ Electron Microscopy
journal, March 2018


In Situ Atomic-Scale Imaging of Phase Boundary Migration in FePO 4 Microparticles During Electrochemical Lithiation
journal, July 2013


Atomic-Scale Observation of Electrochemically Reversible Phase Transformations in SnSe 2 Single Crystals
journal, October 2018

  • Kim, Sungkyu; Yao, Zhenpeng; Lim, Jin-Myoung
  • Advanced Materials, Vol. 30, Issue 51
  • DOI: 10.1002/adma.201804925

Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte
journal, February 2014

  • Holtz, Megan E.; Yu, Yingchao; Gunceler, Deniz
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404577c

Lithium Electrodeposition Dynamics in Aprotic Electrolyte Observed in Situ via Transmission Electron Microscopy
journal, February 2015

  • Leenheer, Andrew J.; Jungjohann, Katherine L.; Zavadil, Kevin R.
  • ACS Nano, Vol. 9, Issue 4
  • DOI: 10.1021/acsnano.5b00876

Phase Boundary Propagation in Li-Alloying Battery Electrodes Revealed by Liquid-Cell Transmission Electron Microscopy
journal, May 2016

  • Leenheer, Andrew J.; Jungjohann, Katherine L.; Zavadil, Kevin R.
  • ACS Nano, Vol. 10, Issue 6
  • DOI: 10.1021/acsnano.6b02200

In Situ TEM Observation of Local Phase Transformation in a Rechargeable LiMn 2 O 4 Nanowire Battery
journal, November 2013

  • Lee, Soyeon; Oshima, Yoshifumi; Hosono, Eiji
  • The Journal of Physical Chemistry C, Vol. 117, Issue 46
  • DOI: 10.1021/jp409032r

In Situ Atomic-Scale Observation of Electrochemical Delithiation Induced Structure Evolution of LiCoO 2 Cathode in a Working All-Solid-State Battery
journal, March 2017

  • Gong, Yue; Zhang, Jienan; Jiang, Liwei
  • Journal of the American Chemical Society, Vol. 139, Issue 12
  • DOI: 10.1021/jacs.6b13344

Heating-Induced Transformations of Atmospheric Particles: Environmental Transmission Electron Microscopy Study
journal, July 2018


A comparative study on structural changes of LiCo1/3Ni1/3Mn1/3O2 and LiNi0.8Co0.15Al0.05O2 during first charge using in situ XRD
journal, August 2006


Reaction Heterogeneity in LiNi 0.8 Co 0.15 Al 0.05 O 2 Induced by Surface Layer
journal, August 2017


Multi-scale study of thermal stability of lithiated graphite
journal, January 2011

  • Chen, Zonghai; Qin, Yan; Ren, Yang
  • Energy & Environmental Science, Vol. 4, Issue 10
  • DOI: 10.1039/c1ee01786a

Thermal Stability of the Li(Ni[sub 0.8]Co[sub 0.15]Al[sub 0.05])O[sub 2] Cathode in the Presence of Cell Components
journal, January 2006

  • Belharouak, I.; Vissers, D.; Amine, K.
  • Journal of The Electrochemical Society, Vol. 153, Issue 11
  • DOI: 10.1149/1.2336994

In situ high-energy X-ray diffraction to study overcharge abuse of 18650-size lithium-ion battery
journal, May 2013


TEM Study of Electrochemical Cycling-Induced Damage and Disorder in LiCoO[sub 2] Cathodes for Rechargeable Lithium Batteries
journal, January 1999

  • Wang, Haifeng
  • Journal of The Electrochemical Society, Vol. 146, Issue 2
  • DOI: 10.1149/1.1391631

Fracture of electrodes in lithium-ion batteries caused by fast charging
journal, October 2010

  • Zhao, Kejie; Pharr, Matt; Vlassak, Joost J.
  • Journal of Applied Physics, Vol. 108, Issue 7
  • DOI: 10.1063/1.3492617

Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries
journal, January 2017

  • Yan, Pengfei; Zheng, Jianming; Gu, Meng
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14101

Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging
journal, July 2018


Coherent lensless X-ray imaging
journal, November 2010


Runaway risk of forming toxic compounds
journal, August 2003

  • Hammami, Amer; Raymond, Nathalie; Armand, Michel
  • Nature, Vol. 424, Issue 6949
  • DOI: 10.1038/424635b

Thermal runaway caused fire and explosion of lithium ion battery
journal, June 2012


Thermal behavior of Li1−yNiO2 and the decomposition mechanism
journal, June 1998


Thermal behavior of delithiated Li(Ni0.8Co0.15Al0.05)O2 and Li1.1(Ni1/3Co1/3Mn1/3)0.9O2 powders
journal, December 2007


Time-resolved XRD study on the thermal decomposition of nickel-based layered cathode materials for Li-ion batteries
journal, December 2006


Correlating Structural Changes and Gas Evolution during the Thermal Decomposition of Charged Li x Ni 0.8 Co 0.15 Al 0.05 O 2 Cathode Materials
journal, January 2013

  • Bak, Seong-Min; Nam, Kyung-Wan; Chang, Wonyoung
  • Chemistry of Materials, Vol. 25, Issue 3
  • DOI: 10.1021/cm303096e

In situ soft XAS study on nickel-based layered cathode material at elevated temperatures: A novel approach to study thermal stability
journal, October 2014

  • Yoon, Won-Sub; Haas, Otto; Muhammad, Shoaib
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06827

Investigation of Changes in the Surface Structure of Li x Ni 0.8 Co 0.15 Al 0.05 O 2 Cathode Materials Induced by the Initial Charge
journal, December 2013

  • Hwang, Sooyeon; Chang, Wonyoung; Kim, Seung Min
  • Chemistry of Materials, Vol. 26, Issue 2
  • DOI: 10.1021/cm403332s

Investigating Local Degradation and Thermal Stability of Charged Nickel-Based Cathode Materials through Real-Time Electron Microscopy
journal, August 2014

  • Hwang, Sooyeon; Kim, Seung Min; Bak, Seong-Min
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 17
  • DOI: 10.1021/am503278f

Tuning the Activity of Oxygen in LiNi 0.8 Co 0.15 Al 0.05 O 2 Battery Electrodes
journal, October 2016

  • Karki, Khim; Huang, Yiqing; Hwang, Sooyeon
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 41
  • DOI: 10.1021/acsami.6b09585

High-Capacity Concentration Gradient Li[Ni 0.865 Co 0.120 Al 0.015 ]O 2 Cathode for Lithium-Ion Batteries
journal, March 2018

  • Park, Kang-Joon; Choi, Min-Jae; Maglia, Filippo
  • Advanced Energy Materials, Vol. 8, Issue 19
  • DOI: 10.1002/aenm.201703612

Compositionally and structurally redesigned high-energy Ni-rich layered cathode for next-generation lithium batteries
journal, March 2019


Li(Ni,Co,Al)O 2 Cathode Delithiation: A Combination of Topological Analysis, Density Functional Theory, Neutron Diffraction, and Machine Learning Techniques
journal, December 2017

  • Eremin, Roman A.; Zolotarev, Pavel N.; Ivanshina, Olga Yu.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 51
  • DOI: 10.1021/acs.jpcc.7b09760

Cationic Ordering Coupled to Reconstruction of Basic Building Units during Synthesis of High-Ni Layered Oxides
journal, August 2018

  • Zhang, Ming-Jian; Teng, Gaofeng; Chen-Wiegart, Yu-chen Karen
  • Journal of the American Chemical Society, Vol. 140, Issue 39
  • DOI: 10.1021/jacs.8b06150

Cooling Induced Surface Reconstruction during Synthesis of High‐Ni Layered Oxides
journal, October 2019

  • Zhang, Ming‐Jian; Hu, Xiaobing; Li, Maofan
  • Advanced Energy Materials, Vol. 9, Issue 43
  • DOI: 10.1002/aenm.201901915

Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes
journal, June 2015

  • Li, Y.; Zakharov, D.; Zhao, S.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8583

Structural Changes and Thermal Stability of Charged LiNi x Mn y Co z O 2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy
journal, December 2014

  • Bak, Seong-Min; Hu, Enyuan; Zhou, Yongning
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 24
  • DOI: 10.1021/am506712c

Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode
journal, June 2018


Operando X-ray Absorption Study of the Redox Processes Involved upon Cycling of the Li-Rich Layered Oxide Li 1.20 Mn 0.54 Co 0.13 Ni 0.13 O 2 in Li Ion Batteries
journal, March 2014

  • Koga, H.; Croguennec, L.; Ménétrier, M.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 11
  • DOI: 10.1021/jp412197z

In situ X-ray absorption spectroscopic study of Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2
journal, August 2011


Understanding voltage decay in lithium-excess layered cathode materials through oxygen-centred structural arrangement
journal, August 2018


Surface-to-Bulk Redox Coupling through Thermally Driven Li Redistribution in Li- and Mn-Rich Layered Cathode Materials
journal, July 2019

  • Li, Shaofeng; Lee, Sang-Jun; Wang, Xuelong
  • Journal of the American Chemical Society, Vol. 141, Issue 30
  • DOI: 10.1021/jacs.9b05349

In-situ X-ray diffraction studies of lithium–sulfur batteries
journal, March 2013


Sulfur Speciation in Li–S Batteries Determined by Operando X-ray Absorption Spectroscopy
journal, September 2013

  • Cuisinier, Marine; Cabelguen, Pierre-Etienne; Evers, Scott
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 19
  • DOI: 10.1021/jz401763d

In Situ TEM Observation of Electrochemical Lithiation of Sulfur Confined within Inner Cylindrical Pores of Carbon Nanotubes
journal, October 2015

  • Kim, Hyea; Lee, Jung Tae; Magasinski, Alexandre
  • Advanced Energy Materials, Vol. 5, Issue 24
  • DOI: 10.1002/aenm.201501306

Thermal Stability of Li 2 O 2 and Li 2 O for Li-Air Batteries: In Situ XRD and XPS Studies
journal, January 2013

  • Yao, Koffi P. C.; Kwabi, David G.; Quinlan, Ronald A.
  • Journal of The Electrochemical Society, Vol. 160, Issue 6
  • DOI: 10.1149/2.069306jes

In situ synchrotron X-ray diffraction studies of lithium oxygen batteries
journal, January 2013

  • Ryan, Kate R.; Trahey, Lynn; Okasinski, John S.
  • Journal of Materials Chemistry A, Vol. 1, Issue 23
  • DOI: 10.1039/c3ta10361g

Nature of Li 2 O 2 Oxidation in a Li–O 2 Battery Revealed by Operando X-ray Diffraction
journal, November 2014

  • Ganapathy, Swapna; Adams, Brian D.; Stenou, Georgiana
  • Journal of the American Chemical Society, Vol. 136, Issue 46
  • DOI: 10.1021/ja508794r

In Situ Transmission Electron Microscopy Observations of Electrochemical Oxidation of Li 2 O 2
journal, April 2013

  • Zhong, Li; Mitchell, Robert R.; Liu, Yang
  • Nano Letters, Vol. 13, Issue 5
  • DOI: 10.1021/nl400731w

Revealing the reaction mechanisms of Li–O2 batteries using environmental transmission electron microscopy
journal, March 2017

  • Luo, Langli; Liu, Bin; Song, Shidong
  • Nature Nanotechnology, Vol. 12, Issue 6
  • DOI: 10.1038/nnano.2017.27

Observation of Microstructural Evolution in Li Battery Cathode Oxide Particles by In Situ Electron Microscopy
journal, May 2013

  • Miller, Dean J.; Proff, Christian; Wen, J. G.
  • Advanced Energy Materials, Vol. 3, Issue 8
  • DOI: 10.1002/aenm.201300015