DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Insights into Reactivity of Silicon Negative Electrodes: Analysis Using Isothermal Microcalorimetry

Abstract

Silicon offers high theoretical capacity as a negative electrode material for lithium-ion batteries; however, high irreversible capacity upon initial cycling and poor cycle life have limited commercial adoption. Herein, we report an operando isothermal microcalorimetry (IMC) study of a model system containing lithium metal and silicon composite film electrodes during the first two cycles of (de)lithiation. The total heat flow data are analyzed in terms of polarization, entropic, and parasitic heat flow contributions to quantify and determine the onset of parasitic reactions. These parasitic reactions, which include solid–electrolyte interphase formation, contribute to electrochemical irreversibility. Cycle 1 lithiation demonstrates the highest thermal energy output at 1509 mWh/g, compared to cycle 1 delithiation and cycle 2. To complement the calorimetry, operando X-ray diffraction is used to track the phase evolution of silicon. During cycle 1 lithiation, crystalline Si undergoes transformation to amorphous lithiated silicon and ultimately to crystalline Li15Si4. The solid-state amorphization process is correlated to a decrease in entropic heat flow, suggesting that heat associated with the amorphization contributes significantly to the entropic heat flow term. In conclusion, this study effectively uses IMC to probe the parasitic reactions that occur during lithiation of a silicon electrode, demonstrating an approach that canmore » be broadly applied to quantify parasitic reactions in other complex systems.« less

Authors:
 [1];  [1];  [1];  [1]; ORCiD logo [2];  [1];  [2];  [2];  [2]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [3]
  1. Stony Brook Univ., Stony Brook, NY (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. Stony Brook Univ., Stony Brook, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Mesoscale Transport Properties (m2mt); Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1580221
Report Number(s):
BNL-212444-2019-JAAM
Journal ID: ISSN 1944-8244
Grant/Contract Number:  
SC0012704; SC0012673
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 11; Journal Issue: 41; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; isothermal microcalorimetry; silicon; lithiation; heat flow; entropy; polarization

Citation Formats

Housel, Lisa M., Li, Wenzao, Quilty, Calvin D., Vila, Mallory N., Wang, Lei, Tang, Christopher R., Bock, David C., Wu, Qiyuan, Tong, Xiao, Head, Ashley R., Takeuchi, Kenneth J., Marschilok, Amy C., and Takeuchi, Esther S. Insights into Reactivity of Silicon Negative Electrodes: Analysis Using Isothermal Microcalorimetry. United States: N. p., 2019. Web. doi:10.1021/acsami.9b10772.
Housel, Lisa M., Li, Wenzao, Quilty, Calvin D., Vila, Mallory N., Wang, Lei, Tang, Christopher R., Bock, David C., Wu, Qiyuan, Tong, Xiao, Head, Ashley R., Takeuchi, Kenneth J., Marschilok, Amy C., & Takeuchi, Esther S. Insights into Reactivity of Silicon Negative Electrodes: Analysis Using Isothermal Microcalorimetry. United States. https://doi.org/10.1021/acsami.9b10772
Housel, Lisa M., Li, Wenzao, Quilty, Calvin D., Vila, Mallory N., Wang, Lei, Tang, Christopher R., Bock, David C., Wu, Qiyuan, Tong, Xiao, Head, Ashley R., Takeuchi, Kenneth J., Marschilok, Amy C., and Takeuchi, Esther S. Tue . "Insights into Reactivity of Silicon Negative Electrodes: Analysis Using Isothermal Microcalorimetry". United States. https://doi.org/10.1021/acsami.9b10772. https://www.osti.gov/servlets/purl/1580221.
@article{osti_1580221,
title = {Insights into Reactivity of Silicon Negative Electrodes: Analysis Using Isothermal Microcalorimetry},
author = {Housel, Lisa M. and Li, Wenzao and Quilty, Calvin D. and Vila, Mallory N. and Wang, Lei and Tang, Christopher R. and Bock, David C. and Wu, Qiyuan and Tong, Xiao and Head, Ashley R. and Takeuchi, Kenneth J. and Marschilok, Amy C. and Takeuchi, Esther S.},
abstractNote = {Silicon offers high theoretical capacity as a negative electrode material for lithium-ion batteries; however, high irreversible capacity upon initial cycling and poor cycle life have limited commercial adoption. Herein, we report an operando isothermal microcalorimetry (IMC) study of a model system containing lithium metal and silicon composite film electrodes during the first two cycles of (de)lithiation. The total heat flow data are analyzed in terms of polarization, entropic, and parasitic heat flow contributions to quantify and determine the onset of parasitic reactions. These parasitic reactions, which include solid–electrolyte interphase formation, contribute to electrochemical irreversibility. Cycle 1 lithiation demonstrates the highest thermal energy output at 1509 mWh/g, compared to cycle 1 delithiation and cycle 2. To complement the calorimetry, operando X-ray diffraction is used to track the phase evolution of silicon. During cycle 1 lithiation, crystalline Si undergoes transformation to amorphous lithiated silicon and ultimately to crystalline Li15Si4. The solid-state amorphization process is correlated to a decrease in entropic heat flow, suggesting that heat associated with the amorphization contributes significantly to the entropic heat flow term. In conclusion, this study effectively uses IMC to probe the parasitic reactions that occur during lithiation of a silicon electrode, demonstrating an approach that can be broadly applied to quantify parasitic reactions in other complex systems.},
doi = {10.1021/acsami.9b10772},
journal = {ACS Applied Materials and Interfaces},
number = 41,
volume = 11,
place = {United States},
year = {Tue Sep 24 00:00:00 EDT 2019},
month = {Tue Sep 24 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A review on the key issues for lithium-ion battery management in electric vehicles
journal, March 2013


Nanostructured silicon for high capacity lithium battery anodes
journal, January 2011

  • Szczech, Jeannine R.; Jin, Song
  • Energy Environ. Sci., Vol. 4, Issue 1
  • DOI: 10.1039/C0EE00281J

Structural Changes in Silicon Anodes during Lithium Insertion/Extraction
journal, January 2004

  • Obrovac, M. N.; Christensen, Leif
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 5
  • DOI: 10.1149/1.1652421

Lithium Ion Battery Peformance of Silicon Nanowires with Carbon Skin
journal, December 2013

  • Bogart, Timothy D.; Oka, Daichi; Lu, Xiaotang
  • ACS Nano, Vol. 8, Issue 1
  • DOI: 10.1021/nn405710w

Silicon Anode Design for Lithium-Ion Batteries: Progress and Perspectives
journal, December 2017

  • Franco Gonzalez, Alba; Yang, Nai-Hsuan; Liu, Ru-Shi
  • The Journal of Physical Chemistry C, Vol. 121, Issue 50
  • DOI: 10.1021/acs.jpcc.7b07793

Silicon Nanotube Battery Anodes
journal, November 2009

  • Park, Mi-Hee; Kim, Min Gyu; Joo, Jaebum
  • Nano Letters, Vol. 9, Issue 11, p. 3844-3847
  • DOI: 10.1021/nl902058c

Silicon nanowires for Li-based battery anodes: a review
journal, January 2013

  • Zamfir, Mihai Robert; Nguyen, Hung Tran; Moyen, Eric
  • Journal of Materials Chemistry A, Vol. 1, Issue 34
  • DOI: 10.1039/c3ta11714f

Silicon based lithium-ion battery anodes: A chronicle perspective review
journal, January 2017


A review of the electrochemical performance of alloy anodes for lithium-ion batteries
journal, January 2011


Parasitic Reactions in Nanosized Silicon Anodes for Lithium-Ion Batteries
journal, February 2017


Sodium Carboxymethyl Cellulose
journal, January 2007

  • Li, Jing; Lewis, R. B.; Dahn, J. R.
  • Electrochemical and Solid-State Letters, Vol. 10, Issue 2
  • DOI: 10.1149/1.2398725

High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries
journal, January 2012

  • Lin, Yong-Mao; Klavetter, Kyle C.; Abel, Paul R.
  • Chemical Communications, Vol. 48, Issue 58
  • DOI: 10.1039/c2cc31712e

Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation
journal, November 2016


Measurement of Parasitic Reactions in Li Ion Cells by Electrochemical Calorimetry
journal, January 2012

  • Krause, L. J.; Jensen, L. D.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 159, Issue 7
  • DOI: 10.1149/2.021207jes

Surface and Interface Engineering of Silicon-Based Anode Materials for Lithium-Ion Batteries
journal, July 2017


Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives
journal, January 2017

  • Qi, Wen; Shapter, Joseph G.; Wu, Qian
  • Journal of Materials Chemistry A, Vol. 5, Issue 37
  • DOI: 10.1039/C7TA05283A

Rationally Designed Silicon Nanostructures as Anode Material for Lithium-Ion Batteries
journal, October 2017

  • Shen, Tong; Yao, Zhujun; Xia, Xinhui
  • Advanced Engineering Materials, Vol. 20, Issue 1
  • DOI: 10.1002/adem.201700591

Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control
journal, March 2012

  • Wu, Hui; Chan, Gerentt; Choi, Jang Wook
  • Nature Nanotechnology, Vol. 7, Issue 5
  • DOI: 10.1038/nnano.2012.35

Designing nanostructured Si anodes for high energy lithium ion batteries
journal, October 2012


High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

Promises and challenges of nanomaterials for lithium-based rechargeable batteries
journal, June 2016


In situ TEM electrochemistry of anode materials in lithium ion batteries
journal, January 2011

  • Liu, Xiao Hua; Huang, Jian Yu
  • Energy & Environmental Science, Vol. 4, Issue 10
  • DOI: 10.1039/c1ee01918j

Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
journal, January 2012

  • Liu, Xiao Hua; Zhong, Li; Huang, Shan
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn204476h

The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes
journal, August 2015


Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review
journal, October 2013


Lithiation of Magnetite (Fe 3 O 4 ): Analysis Using Isothermal Microcalorimetry and Operando X-ray Absorption Spectroscopy
journal, April 2018

  • Huie, Matthew M.; Bock, David C.; Wang, Lei
  • The Journal of Physical Chemistry C, Vol. 122, Issue 19
  • DOI: 10.1021/acs.jpcc.8b01681

Determination of the Voltage Dependence of Parasitic Heat Flow in Lithium Ion Cells Using Isothermal Microcalorimetry
journal, January 2014

  • Downie, L. E.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 161, Issue 12
  • DOI: 10.1149/2.0301412jes

Isothermal microcalorimetry as a tool to study solid–electrolyte interphase formation in lithium-ion cells
journal, January 2016

  • Hall, David S.; Glazier, Stephen L.; Dahn, J. R.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 16
  • DOI: 10.1039/C6CP01309K

Isothermal Microcalorimetry: Insight into the Impact of Crystallite Size and Agglomeration on the Lithiation of Magnetite, Fe 3 O 4
journal, January 2019

  • Huie, Matthew M.; Bock, David C.; Bruck, Andrea M.
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 7
  • DOI: 10.1021/acsami.8b20636

The Impact of Electrolyte Composition on Parasitic Reactions in Lithium Ion Cells Charged to 4.7 V Determined Using Isothermal Microcalorimetry
journal, November 2015

  • Downie, L. E.; Hyatt, S. R.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 163, Issue 2
  • DOI: 10.1149/2.0081602jes

The Effect of Carbon Dioxide on the Cycle Life and Electrolyte Stability of Li-Ion Full Cells Containing Silicon Alloy
journal, January 2017

  • Krause, L. J.; Chevrier, V. L.; Jensen, L. D.
  • Journal of The Electrochemical Society, Vol. 164, Issue 12
  • DOI: 10.1149/2.1121712jes

Surface Area Increase of Silicon Alloys in Li-Ion Full Cells Measured by Isothermal Heat Flow Calorimetry
journal, January 2017

  • Krause, L. J.; Brandt, T.; Chevrier, V. L.
  • Journal of The Electrochemical Society, Vol. 164, Issue 9
  • DOI: 10.1149/2.0501712jes

Evaluating Si-Based Materials for Li-Ion Batteries in Commercially Relevant Negative Electrodes
journal, January 2014

  • Chevrier, Vincent L.; Liu, Li; Le, Dinh Ba
  • Journal of The Electrochemical Society, Vol. 161, Issue 5
  • DOI: 10.1149/2.066405jes

GSAS-II : the genesis of a modern open-source all purpose crystallography software package
journal, March 2013


Microscopic structure of the SiO 2 /Si interface
journal, September 1988


Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy
journal, February 2012

  • Philippe, Bertrand; Dedryvère, Rémi; Allouche, Joachim
  • Chemistry of Materials, Vol. 24, Issue 6
  • DOI: 10.1021/cm2034195

Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction for Lithium-Ion Battery Application
journal, January 2011

  • Xun, S.; Song, X.; Grass, M. E.
  • Electrochemical and Solid-State Letters, Vol. 14, Issue 5
  • DOI: 10.1149/1.3559765

Metallurgically lithiated SiO x anode with high capacity and ambient air compatibility
journal, June 2016

  • Zhao, Jie; Lee, Hyun-Wook; Sun, Jie
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 27
  • DOI: 10.1073/pnas.1603810113

Quartz (SiO2): a new energy storage anode material for Li-ion batteries
journal, January 2012

  • Chang, Won-Seok; Park, Cheol-Min; Kim, Jae-Hun
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee00003b

Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries
journal, December 2008


Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode
journal, October 2006


Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries
journal, October 2012


Probing the Reaction between PVDF and LiPAA vs Li 7 Si 3 : Investigation of Binder Stability for Si Anodes
journal, January 2019

  • Han, Binghong; Piernas-Muñoz, Maria Jose; Dogan, Fulya
  • Journal of The Electrochemical Society, Vol. 166, Issue 12
  • DOI: 10.1149/2.0241912jes

Cooperation between Active Material, Polymeric Binder and Conductive Carbon Additive in Lithium Ion Battery Cathode
journal, February 2012

  • Zheng, Honghe; Yang, Ruizhi; Liu, Gao
  • The Journal of Physical Chemistry C, Vol. 116, Issue 7
  • DOI: 10.1021/jp208428w

In Situ Measurements of Stress-Potential Coupling in Lithiated Silicon
journal, January 2010

  • Sethuraman, V. A.; Srinivasan, V.; Bower, A. F.
  • Journal of The Electrochemical Society, Vol. 157, Issue 11
  • DOI: 10.1149/1.3489378

Analysis of Electrochemical Lithiation and Delithiation Kinetics in Silicon
journal, December 2012

  • Sethuraman, Vijay A.; Srinivasan, Venkat; Newman, John
  • Journal of The Electrochemical Society, Vol. 160, Issue 2
  • DOI: 10.1149/2.008303jes

Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells
journal, January 1990

  • Fong, Rosamaría
  • Journal of The Electrochemical Society, Vol. 137, Issue 7
  • DOI: 10.1149/1.2086855

Analysis of Vinylene Carbonate Derived SEI Layers on Graphite Anode
journal, January 2004

  • Ota, Hitoshi; Sakata, Yuuichi; Inoue, Atsuyoshi
  • Journal of The Electrochemical Society, Vol. 151, Issue 10
  • DOI: 10.1149/1.1785795

Potentiometric measurement of entropy change for lithium batteries
journal, January 2017

  • Zhang, Xiao-Feng; Zhao, Yan; Patel, Yatish
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 15
  • DOI: 10.1039/C6CP08505A

Electrochemical-Calorimetric Studies of Lithium-Ion Cells
journal, January 1998

  • Hong, Jong-Sung
  • Journal of The Electrochemical Society, Vol. 145, Issue 5
  • DOI: 10.1149/1.1838509

Cycling-Induced Changes in the Entropy Profiles of Lithium Cobalt Oxide Electrodes
journal, December 2014

  • Hudak, Nicholas S.; Davis, Lorie E.; Nagasubramanian, Ganesan
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0071503jes

Particle-Size Effects on the Entropy Behavior of a Li x FePO 4 Electrode
journal, April 2014


An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si
journal, January 2007

  • Li, Jing; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 154, Issue 3
  • DOI: 10.1149/1.2409862

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


The Mechanism of SEI Formation on Single Crystal Si(100), Si(110) and Si(111) Electrodes
journal, January 2015

  • Vogl, U. S.; Lux, S. F.; Das, P.
  • Journal of The Electrochemical Society, Vol. 162, Issue 12
  • DOI: 10.1149/2.0361512jes

Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries
journal, January 2004

  • Ryu, Ji Heon; Kim, Jae Woo; Sung, Yung-Eun
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 10, p. A306-A309
  • DOI: 10.1149/1.1792242

The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries
journal, January 2011

  • Oumellal, Y.; Delpuech, N.; Mazouzi, D.
  • Journal of Materials Chemistry, Vol. 21, Issue 17
  • DOI: 10.1039/c1jm10213c

Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes
journal, January 2016