DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ionic transport and atomic structure of AgI-HgS-GeS2 glasses

Abstract

Quasi-ternary (AgI)x(HgS)0.5–x/2(GeS2)0.5–x/2 glasses, 10–4≤x≤0.6 were studied over a wide composition range covering nearly 4 orders of magnitude in the mobile cation content. The glasses show a remarkable increase of the ionic conductivity by 12 orders of magnitude and exhibit two drastically different ion transport regimes: (i) a power-law critical percolation at x≲0.04, and (ii) a modifier-controlled conductivity, exponentially dependent on x≳0.1. Using Raman spectroscopy and high-energy X-ray diffraction supported by DFT modelling of the Raman spectra we show that the glass network is essentially formed by corner-sharing CS-GeS4/2 tetrahedra. Mercury sulfide in glasses is dimorphic. The majority of Hg species (70% at x<0.2) exist as two-fold coordinated (HgS2/2)n chains. Silver species have mixed (2I+2S) tetrahedral environment forming either edge–sharing ES-Ag2I2S4/2 dimers or corner-sharing (CS-AgI2/2S2/2)n chains. Here, the relationship between the ionic transport and atomic structure of the glasses is discussed.

Authors:
 [1];  [1];  [1];  [1];  [2];  [1]
  1. Univ. du Littoral Cote d'Opale, Dunkerque (France)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Agence Nationale de la recherche (ANR); European Regional Development Fund (ERDF)
OSTI Identifier:
1579950
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Pure and Applied Chemistry
Additional Journal Information:
Journal Volume: 91; Journal Issue: 11; Journal ID: ISSN 0033-4545
Publisher:
IUPAC
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; DFT modelling; Raman spectroscopy; critical percolation; high-energy X-ray diffraction; ion transport regimes; mercury sulphide dimorphism; mixed tetrahedral silver environment; silver iodide chalcogenide glasses

Citation Formats

Zaiter, Rayan, Kassem, Mohammad, Fontanari, Daniele, Cuisset, Arnaud, Benmore, Chris J., and Bychkov, Eugene. Ionic transport and atomic structure of AgI-HgS-GeS2 glasses. United States: N. p., 2019. Web. doi:10.1515/pac-2019-0103.
Zaiter, Rayan, Kassem, Mohammad, Fontanari, Daniele, Cuisset, Arnaud, Benmore, Chris J., & Bychkov, Eugene. Ionic transport and atomic structure of AgI-HgS-GeS2 glasses. United States. https://doi.org/10.1515/pac-2019-0103
Zaiter, Rayan, Kassem, Mohammad, Fontanari, Daniele, Cuisset, Arnaud, Benmore, Chris J., and Bychkov, Eugene. Thu . "Ionic transport and atomic structure of AgI-HgS-GeS2 glasses". United States. https://doi.org/10.1515/pac-2019-0103. https://www.osti.gov/servlets/purl/1579950.
@article{osti_1579950,
title = {Ionic transport and atomic structure of AgI-HgS-GeS2 glasses},
author = {Zaiter, Rayan and Kassem, Mohammad and Fontanari, Daniele and Cuisset, Arnaud and Benmore, Chris J. and Bychkov, Eugene},
abstractNote = {Quasi-ternary (AgI)x(HgS)0.5–x/2(GeS2)0.5–x/2 glasses, 10–4≤x≤0.6 were studied over a wide composition range covering nearly 4 orders of magnitude in the mobile cation content. The glasses show a remarkable increase of the ionic conductivity by 12 orders of magnitude and exhibit two drastically different ion transport regimes: (i) a power-law critical percolation at x≲0.04, and (ii) a modifier-controlled conductivity, exponentially dependent on x≳0.1. Using Raman spectroscopy and high-energy X-ray diffraction supported by DFT modelling of the Raman spectra we show that the glass network is essentially formed by corner-sharing CS-GeS4/2 tetrahedra. Mercury sulfide in glasses is dimorphic. The majority of Hg species (70% at x<0.2) exist as two-fold coordinated (HgS2/2)n chains. Silver species have mixed (2I+2S) tetrahedral environment forming either edge–sharing ES-Ag2I2S4/2 dimers or corner-sharing (CS-AgI2/2S2/2)n chains. Here, the relationship between the ionic transport and atomic structure of the glasses is discussed.},
doi = {10.1515/pac-2019-0103},
journal = {Pure and Applied Chemistry},
number = 11,
volume = 91,
place = {United States},
year = {Thu Feb 28 00:00:00 EST 2019},
month = {Thu Feb 28 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Correlation between Free Volume and Ionic Conductivity in Fast Ion Conducting Glasses
journal, October 1996


The role of databases in support of computational chemistry calculations
journal, October 1996


Area detector corrections for high quality synchrotron X-ray structure factor measurements
journal, January 2012

  • Skinner, Lawrie B.; Benmore, Chris J.; Parise, John B.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 662, Issue 1
  • DOI: 10.1016/j.nima.2011.09.031

Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

121-Sb Mössbauer study of insulating and ion-conducting antimony chalcogenide-based glasses
journal, June 1993


Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


Formation region and characterization of superionic conducting glasses in the systems AgIAg2OMxOy
journal, October 1980

  • Minami, Tsutomu; Imazawa, Kazuhiro; Tanaka, Masami
  • Journal of Non-Crystalline Solids, Vol. 42, Issue 1-3
  • DOI: 10.1016/0022-3093(80)90045-9

Vibrational modes and structure of (AgI)x (GeS1.5)100−x chalcohalide glasses
journal, October 2009


Unraveling the atomic structure of Ge-rich sulfide glasses
journal, January 2013

  • Bytchkov, Aleksei; Cuello, Gabriel J.; Kohara, Shinji
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 22
  • DOI: 10.1039/c3cp50536g

Percolation transition in Ag-doped germanium chalcogenide-based glasses: conductivity and silver diffusion results
journal, November 1996


Synthesis, Crystal Structure and Thermal Properties of Silver(I) Bromide Ethylenediamine Coordination Polymers
journal, September 2004

  • Näther, Christian; Beck, Andreas
  • Zeitschrift für Naturforschung B, Vol. 59, Issue 9
  • DOI: 10.1515/znb-2004-0908

Tl2S-GeS-GeS2 system: Glass formation, macroscopic properties, and charge transport
journal, March 2019


Resonant Raman effect in cinnabar
journal, January 1980


Preparation, structural, Raman and impedance spectroscopic characterisation of the silver ion conductor (AgI) 2 Ag 3 SbS 3
journal, January 2002

  • Nilges, Tom; Reiser, Sara; Hong, Jung Hoon
  • Phys. Chem. Chem. Phys., Vol. 4, Issue 23
  • DOI: 10.1039/B203556A

Mercury thioarsenate glasses: a hybrid chain/pyramidal network
journal, January 2014

  • Kassem, Mohammad; Khaoulani, Sohayb; Cuisset, Arnaud
  • RSC Adv., Vol. 4, Issue 90
  • DOI: 10.1039/C4RA07811J

The Crystallography of Silver Sulfide, Ag 2 S
journal, January 1958


Superionic and ion-conducting chalcogenide glasses: Transport regimes and structural features
journal, May 2009


Ring statistics analysis of topological networks: New approach and application to amorphous GeS2 and SiO2 systems
journal, June 2010


Similarity of structure properties of Hg1− x Mnx S and Cd1 − x Mnx S (structure properties of HgMnS and CdMnS)
journal, January 1996


Lattice Vibrations in Trigonal HgS
journal, May 1970


Über Münzmetall-Quecksilber-Chalkogenidhalogenide. III Zur Kristallstruktur von Ag2HgSI2
journal, January 2003

  • Keller, Hans-Lothar; Wimbert, Lars
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 629, Issue 1213
  • DOI: 10.1002/zaac.200300238

Mixed cation effect in chalcogenide glasses Rb 2 S A g 2 S G e S 2
journal, April 2001


Neutron diffraction by germania, silica and radiation-damaged silica glasses
journal, February 1969


Über Münzmetall-Quecksilber-Chalkogenidhalogenide. V1) Solvothermalsynthese und Kristallstruktur der Hochtemperatur-Modifikation von AgHgSI
journal, July 2004

  • Beck, Johannes; Keller, Hans-Lothar; Rompel, Matthias
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 630, Issue 7
  • DOI: 10.1002/zaac.200400083

Structural study of GeS 2 glass: Reverse Monte Carlo modelling for edge-sharing tetrahedral network
journal, April 2017


Mercury Sulfide Dimorphism in Thioarsenate Glasses
journal, May 2016

  • Kassem, M.; Sokolov, A.; Cuisset, A.
  • The Journal of Physical Chemistry B, Vol. 120, Issue 23
  • DOI: 10.1021/acs.jpcb.6b03382

Darstellung und Kristallstruktur von AgTeI
journal, January 1995


A New Method for Producing Low-electrical-resistivity Patterns in Insulating Chalcogenide Glasses
journal, June 1971

  • Sakuma, Hiraku; Shimizu, Isamu; Kokado, Hiroshi
  • Bulletin of the Chemical Society of Japan, Vol. 44, Issue 6
  • DOI: 10.1246/bcsj.44.1723

Lead Detection in Industrial Atmospheric Particles
journal, January 2010

  • Milochova, Mariana; Bychkov, Eugene
  • Journal of the Physical Society of Japan, Vol. 79, Issue Suppl.A
  • DOI: 10.1143/JPSJS.79SA.173

Investigations on glasses in the Sb2S3Agl system
journal, February 1988

  • Sun, Hong Wei; Tanguy, Bernard; Reau, Jean-Maurice
  • Journal of Non-Crystalline Solids, Vol. 99, Issue 2-3
  • DOI: 10.1016/0022-3093(88)90432-2

Ionic transport in AgI-HgS-As 2 S 3 glasses: Critical percolation and modifier-controlled domains
journal, January 2018

  • Kassem, Mohammad; Khaoulani, Sohayb; Bychkov, Eugene
  • Journal of the American Ceramic Society, Vol. 101, Issue 6
  • DOI: 10.1111/jace.15414

Structure and Ionic Conduction in ( AgI ) x ( AgP O 3 ) 1 x Glasses
journal, January 1995


Spatially resolved Raman analysis of laser induced refractive index variation in chalcogenide glass
journal, January 2012

  • Masselin, Pascal; Le Coq, David; Cuisset, Arnaud
  • Optical Materials Express, Vol. 2, Issue 12
  • DOI: 10.1364/OME.2.001768

Two-dimensional detector software: From real detector to idealised image or two-theta scan
journal, January 1996

  • Hammersley, A. P.; Svensson, S. O.; Hanfland, M.
  • High Pressure Research, Vol. 14, Issue 4-6, p. 235-248
  • DOI: 10.1080/08957959608201408