DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulation and partial prototyping of an eight‐junction holographic spectrum‐splitting photovoltaic module

Abstract

Abstract Spectrum‐splitting photovoltaics incorporate optical elements to separate sunlight into frequency bands, which can be targeted at solar cells with bandgaps optimized for each sub‐band. Here, we present the design of a holographic diffraction grating‐based spectrum‐splitting photovoltaic module integrating eight III‐V compound semiconductor cells as four dual‐junction tandems. Four stacks of simple sinusoidal volume phase holographic diffraction gratings each simultaneously split and concentrate sunlight onto cells with bandgaps spanning the solar spectrum. The high‐efficiency cells get an additional performance boost from concentration incorporated using a single or a compound trough concentrator, providing up to 380X total concentration. Cell bandgap optimization incorporated an experimentally derived bandgap‐dependent external radiative efficiency function. Simulations show 33.2% module conversion efficiency is achievable. One grating stack is experimentally fabricated and characterized.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]
  1. Thomas J. Watson Laboratories of Applied Physics California Institute of Technology Pasadena CA USA
  2. Thomas J. Watson Laboratories of Applied Physics California Institute of Technology Pasadena CA USA, Department of Physics and Engineering Physics Tulane University New Orleans LA USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1579750
Alternate Identifier(s):
OSTI ID: 1579751
Resource Type:
Published Article
Journal Name:
Energy Science & Engineering
Additional Journal Information:
Journal Name: Energy Science & Engineering Journal Volume: 7 Journal Issue: 6; Journal ID: ISSN 2050-0505
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Darbe, Sunita, Escarra, Matthew D., Warmann, Emily C., and Atwater, Harry A.. Simulation and partial prototyping of an eight‐junction holographic spectrum‐splitting photovoltaic module. United Kingdom: N. p., 2019. Web. doi:10.1002/ese3.445.
Darbe, Sunita, Escarra, Matthew D., Warmann, Emily C., & Atwater, Harry A.. Simulation and partial prototyping of an eight‐junction holographic spectrum‐splitting photovoltaic module. United Kingdom. https://doi.org/10.1002/ese3.445
Darbe, Sunita, Escarra, Matthew D., Warmann, Emily C., and Atwater, Harry A.. Fri . "Simulation and partial prototyping of an eight‐junction holographic spectrum‐splitting photovoltaic module". United Kingdom. https://doi.org/10.1002/ese3.445.
@article{osti_1579750,
title = {Simulation and partial prototyping of an eight‐junction holographic spectrum‐splitting photovoltaic module},
author = {Darbe, Sunita and Escarra, Matthew D. and Warmann, Emily C. and Atwater, Harry A.},
abstractNote = {Abstract Spectrum‐splitting photovoltaics incorporate optical elements to separate sunlight into frequency bands, which can be targeted at solar cells with bandgaps optimized for each sub‐band. Here, we present the design of a holographic diffraction grating‐based spectrum‐splitting photovoltaic module integrating eight III‐V compound semiconductor cells as four dual‐junction tandems. Four stacks of simple sinusoidal volume phase holographic diffraction gratings each simultaneously split and concentrate sunlight onto cells with bandgaps spanning the solar spectrum. The high‐efficiency cells get an additional performance boost from concentration incorporated using a single or a compound trough concentrator, providing up to 380X total concentration. Cell bandgap optimization incorporated an experimentally derived bandgap‐dependent external radiative efficiency function. Simulations show 33.2% module conversion efficiency is achievable. One grating stack is experimentally fabricated and characterized.},
doi = {10.1002/ese3.445},
journal = {Energy Science & Engineering},
number = 6,
volume = 7,
place = {United Kingdom},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/ese3.445

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Lateral spectrum splitting concentrator photovoltaics: direct measurement of component and submodule efficiency: LSSCPV components and submodule measurement
journal, September 2011

  • Wang, Xiaoting; Waite, Nick; Murcia, Paola
  • Progress in Photovoltaics: Research and Applications, Vol. 20, Issue 2
  • DOI: 10.1002/pip.1194

Spectrum splitting metrics and effect of filter characteristics on photovoltaic system performance
journal, January 2014

  • Russo, Juan M.; Zhang, Deming; Gordon, Michael
  • Optics Express, Vol. 22, Issue S2
  • DOI: 10.1364/OE.22.00A528

Design of photovoltaics for modules with 50% efficiency
journal, April 2017

  • Warmann, Emily C.; Flowers, Cristofer; Lloyd, John
  • Energy Science & Engineering, Vol. 5, Issue 2
  • DOI: 10.1002/ese3.155

A High-Power-Density DC–DC Converter for Distributed PV Architectures
journal, April 2013


Intrinsic high refractive index polymers: Intrinsic high refractive index polymers
journal, November 2014

  • Macdonald, Emily K.; Shaver, Michael P.
  • Polymer International, Vol. 64, Issue 1
  • DOI: 10.1002/pi.4821

Spectrum-splitting photovoltaics: Holographic spectrum splitting in eight-junction, ultra-high efficiency module
conference, June 2013

  • Escarra, Matthew D.; Darbe, Sunita; Warmann, Emily C.
  • 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)
  • DOI: 10.1109/PVSC.2013.6744503

Holographic spectrum splitter for ultra-high efficiency photovoltaics
conference, September 2013

  • Darbe, Sunita; Escarra, Matthew D.; Warmann, Emily C.
  • SPIE Solar Energy + Technology, SPIE Proceedings
  • DOI: 10.1117/12.2024610

High-efficiency Bragg gratings in photothermorefractive glass
journal, January 1999

  • Efimov, Oleg M.; Glebov, Leonid B.; Glebova, Larissa N.
  • Applied Optics, Vol. 38, Issue 4
  • DOI: 10.1364/AO.38.000619

Photonic design principles for ultrahigh-efficiency photovoltaics
journal, February 2012

  • Polman, Albert; Atwater, Harry A.
  • Nature Materials, Vol. 11, Issue 3
  • DOI: 10.1038/nmat3263

Optical Simulation for Multi-Striped Orthogonal Photon-Photocarrier-Propagation Solar Cell (MOP3SC) with Redirection Waveguide
journal, November 2016


The Polyhedral Specular Reflector: A Spectrum-Splitting Multijunction Design to Achieve Ultrahigh ( >50%) Solar Module Efficiencies
journal, January 2019


Light Collection within the Framework of Geometrical Optics*
journal, January 1970


Some Thermodynamics of Photochemical Systems
journal, June 1967

  • Ross, Robert T.
  • The Journal of Chemical Physics, Vol. 46, Issue 12
  • DOI: 10.1063/1.1840606

Energy production advantage of independent subcell connection for multijunction photovoltaics
journal, July 2016

  • Warmann, Emily C.; Atwater, Harry A.
  • Energy Science & Engineering, Vol. 4, Issue 4
  • DOI: 10.1002/ese3.125

High refractive index polymers: fundamental research and practical applications
journal, January 2009

  • Liu, Jin-gang; Ueda, Mitsuru
  • Journal of Materials Chemistry, Vol. 19, Issue 47
  • DOI: 10.1039/b909690f

Development of High-Bandgap AlGaInP Solar Cells Grown by Organometallic Vapor-Phase Epitaxy
journal, May 2016


Compact spectrum splitter for laterally arrayed multi-junction concentrator photovoltaic modules
journal, January 2019

  • Li, Duanhui; Michel, Jurgen; Hu, Juejun
  • Optics Letters, Vol. 44, Issue 13
  • DOI: 10.1364/OL.44.003274

Band gap-voltage offset and energy production in next-generation multijunction solar cells
journal, November 2010

  • King, R. R.; Bhusari, D.; Boca, A.
  • Progress in Photovoltaics: Research and Applications, Vol. 19, Issue 7
  • DOI: 10.1002/pip.1044

Grisms Developed for FOCAS
journal, March 2011

  • Ebizuka, Noboru; Kawabata, Koji S.; Oka, Keiko
  • Publications of the Astronomical Society of Japan, Vol. 63, Issue sp2
  • DOI: 10.1093/pasj/63.sp2.S613

Solar cell efficiency tables (Version 53)
journal, December 2018

  • Green, Martin A.; Hishikawa, Yoshihiro; Dunlop, Ewan D.
  • Progress in Photovoltaics: Research and Applications, Vol. 27, Issue 1
  • DOI: 10.1002/pip.3102

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
journal, March 1961

  • Shockley, William; Queisser, Hans J.
  • Journal of Applied Physics, Vol. 32, Issue 3, p. 510-519
  • DOI: 10.1063/1.1736034

Porous Nanomaterials for Ultrabroadband Omnidirectional Anti-Reflection Surfaces with Applications in High Concentration Photovoltaics
journal, December 2016


Coupled Wave Theory for Thick Hologram Gratings
journal, November 1969


Optimization of multi-grating volume holographic spectrum splitters for photovoltaic applications
journal, January 2016


Analysis of multiwave diffraction of thick gratings
journal, January 1977

  • Magnusson, R.; Gaylord, T. K.
  • Journal of the Optical Society of America, Vol. 67, Issue 9
  • DOI: 10.1364/JOSA.67.001165

Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells
journal, July 2013

  • Geisz, J. F.; Steiner, M. A.; García, I.
  • Applied Physics Letters, Vol. 103, Issue 4
  • DOI: 10.1063/1.4816837