skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on November 4, 2020

Title: Cation-Exchange Synthesis of Highly Monodisperse PbS Quantum Dots from ZnS Nanorods for Efficient Infrared Solar Cells

Abstract

Infrared solar cells that utilize low-bandgap colloidal quantum dots (QDs) are promising devices to enhance the utilization of solar energy by expanding the harvested photons of common photovoltaics into the infrared region. However, the present synthesis of PbS QDs cannot produce highly efficient infrared solar cells. Here in this paper, a general synthesis is developed for low-bandgap PbS QDs (0.65-1 eV) via cation exchange from ZnS nanorods (NRs). First, ZnS NRs are converted to superlattices with segregated PbS domains within each rod. Then, sulfur precursors are released via the dissolution of the ZnS NRs during the cation exchange, which promotes size focusing of PbS QDs. PbS QDs synthesized through this new method have the advantages of high monodispersity, ease-of-size control, in situ passivation of chloride, high stability, and a 'clean' surface. Infrared solar cells based on these PbS QDs with different bandgaps are fabricated, using conventional ligand exchange and device structure. All of the devices produced in this manner show excellent performance, showcasing the high quality of the PbS QDs. The highest performance of infrared solar cells is achieved using ≈0.95 eV PbS QDs, exhibiting an efficiency of 10.0% under AM 1.5 solar illumination, a perovskite-filtered efficiency of 4.2%, andmore » a silicon-filtered efficiency of 1.1%.« less

Authors:
 [1];  [1];  [1];  [2];  [1];  [1];  [3];  [4];  [4];  [5];  [2];  [1];  [6];  [2];  [7]; ORCiD logo [1]
  1. Huazhong Univ. of Science and Technology, Wuhan, Hubei (China). School of Optical and Electronic Information, Engineering Research Center for Functional Ceramics
  2. Huazhong Univ. of Science and Technology, Wuhan, Hubei (China). Wuhan National Lab. for Optoelectronics
  3. Wuhan Inst. of Technology, Wuhan, Hubei (China). School of Materials Science and Engineering
  4. Hubei Univ. of Arts and Science, Xiangyang, Hubei (China). Hubei Key Lab. of Low Dimensional Optoelectronic Materials and Devices
  5. Tsinghua Univ., Shenzhen(China)
  6. Clemson Univ., Clemson, SC (United States)
  7. National Renewable Energy Lab. (NREL), Golden, CO (United States). Chemistry & Nanoscience Center
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Natural Science Foundation of China (NNSFC); Hubei Provincial Natural Science Foundation; Fundamental Research Funds for the Central Universities
OSTI Identifier:
1579638
Alternate Identifier(s):
OSTI ID: 1573071
Report Number(s):
NREL/JA-5900-73814
Journal ID: ISSN 1616-301X
Grant/Contract Number:  
AC36-08GO28308; 61974052; 61804061; 61725401; 2017CFB417; 2017KFYXJJ039
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Name: Advanced Functional Materials; Journal ID: ISSN 1616-301X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; cation exchange; nanorods; PbS; quantum dots; solar cells

Citation Formats

Xia, Yong, Liu, Sisi, Wang, Kang, Yang, Xiaokun, Lian, Linyuan, Zhang, Zhiming, He, Jungang, Liang, Guijie, Wang, Song, Tan, Manlin, Song, Haisheng, Zhang, Daoli, Gao, Jianbo, Tang, Jiang, Beard, Matthew C., and Zhang, Jianbing. Cation-Exchange Synthesis of Highly Monodisperse PbS Quantum Dots from ZnS Nanorods for Efficient Infrared Solar Cells. United States: N. p., 2019. Web. doi:10.1002/adfm.201907379.
Xia, Yong, Liu, Sisi, Wang, Kang, Yang, Xiaokun, Lian, Linyuan, Zhang, Zhiming, He, Jungang, Liang, Guijie, Wang, Song, Tan, Manlin, Song, Haisheng, Zhang, Daoli, Gao, Jianbo, Tang, Jiang, Beard, Matthew C., & Zhang, Jianbing. Cation-Exchange Synthesis of Highly Monodisperse PbS Quantum Dots from ZnS Nanorods for Efficient Infrared Solar Cells. United States. doi:10.1002/adfm.201907379.
Xia, Yong, Liu, Sisi, Wang, Kang, Yang, Xiaokun, Lian, Linyuan, Zhang, Zhiming, He, Jungang, Liang, Guijie, Wang, Song, Tan, Manlin, Song, Haisheng, Zhang, Daoli, Gao, Jianbo, Tang, Jiang, Beard, Matthew C., and Zhang, Jianbing. Mon . "Cation-Exchange Synthesis of Highly Monodisperse PbS Quantum Dots from ZnS Nanorods for Efficient Infrared Solar Cells". United States. doi:10.1002/adfm.201907379.
@article{osti_1579638,
title = {Cation-Exchange Synthesis of Highly Monodisperse PbS Quantum Dots from ZnS Nanorods for Efficient Infrared Solar Cells},
author = {Xia, Yong and Liu, Sisi and Wang, Kang and Yang, Xiaokun and Lian, Linyuan and Zhang, Zhiming and He, Jungang and Liang, Guijie and Wang, Song and Tan, Manlin and Song, Haisheng and Zhang, Daoli and Gao, Jianbo and Tang, Jiang and Beard, Matthew C. and Zhang, Jianbing},
abstractNote = {Infrared solar cells that utilize low-bandgap colloidal quantum dots (QDs) are promising devices to enhance the utilization of solar energy by expanding the harvested photons of common photovoltaics into the infrared region. However, the present synthesis of PbS QDs cannot produce highly efficient infrared solar cells. Here in this paper, a general synthesis is developed for low-bandgap PbS QDs (0.65-1 eV) via cation exchange from ZnS nanorods (NRs). First, ZnS NRs are converted to superlattices with segregated PbS domains within each rod. Then, sulfur precursors are released via the dissolution of the ZnS NRs during the cation exchange, which promotes size focusing of PbS QDs. PbS QDs synthesized through this new method have the advantages of high monodispersity, ease-of-size control, in situ passivation of chloride, high stability, and a 'clean' surface. Infrared solar cells based on these PbS QDs with different bandgaps are fabricated, using conventional ligand exchange and device structure. All of the devices produced in this manner show excellent performance, showcasing the high quality of the PbS QDs. The highest performance of infrared solar cells is achieved using ≈0.95 eV PbS QDs, exhibiting an efficiency of 10.0% under AM 1.5 solar illumination, a perovskite-filtered efficiency of 4.2%, and a silicon-filtered efficiency of 1.1%.},
doi = {10.1002/adfm.201907379},
journal = {Advanced Functional Materials},
number = ,
volume = ,
place = {United States},
year = {2019},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on November 4, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids
journal, November 2016

  • Liu, Mengxia; Voznyy, Oleksandr; Sabatini, Randy
  • Nature Materials, Vol. 16, Issue 2
  • DOI: 10.1038/nmat4800

Nanostructured Back Reflectors for Efficient Colloidal Quantum‐Dot Infrared Optoelectronics
journal, June 2019

  • Baek, Se‐Woong; Molet, Pau; Choi, Min‐Jae
  • Advanced Materials, Vol. 31, Issue 33
  • DOI: 10.1002/adma.201901745

Colloidal-quantum-dot photovoltaics using atomic-ligand passivation
journal, September 2011

  • Tang, Jiang; Kemp, Kyle W.; Hoogland, Sjoerd
  • Nature Materials, Vol. 10, Issue 10
  • DOI: 10.1038/nmat3118

Air-Stable and Efficient PbSe Quantum-Dot Solar Cells Based upon ZnSe to PbSe Cation-Exchanged Quantum Dots
journal, July 2015


Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites
journal, September 1993

  • Murray, C. B.; Norris, D. J.; Bawendi, M. G.
  • Journal of the American Chemical Society, Vol. 115, Issue 19, p. 8706-8715
  • DOI: 10.1021/ja00072a025

Preparation of Cd/Pb Chalcogenide Heterostructured Janus Particles via Controllable Cation Exchange
journal, June 2015


Building devices from colloidal quantum dots
journal, August 2016


A Facet‐Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics
journal, March 2019

  • Kim, Younghoon; Che, Fanglin; Jo, Jea Woong
  • Advanced Materials, Vol. 31, Issue 17
  • DOI: 10.1002/adma.201805580

Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals
journal, July 2003

  • Yu, W. William; Qu, Lianhua; Guo, Wenzhuo
  • Chemistry of Materials, Vol. 15, Issue 14, p. 2854-2860
  • DOI: 10.1021/cm034081k

Solution processed infrared- and thermo-photovoltaics based on 0.7 eV bandgap PbS colloidal quantum dots
journal, January 2019

  • Bi, Yu; Bertran, Arnau; Gupta, Shuchi
  • Nanoscale, Vol. 11, Issue 3
  • DOI: 10.1039/C8NR08755E

PbSe Quantum Dot Solar Cells with More than 6% Efficiency Fabricated in Ambient Atmosphere
journal, September 2014

  • Zhang, Jianbing; Gao, Jianbo; Church, Carena P.
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl503085v

Monodisperse, Air-Stable PbS Nanocrystals via Precursor Stoichiometry Control
journal, May 2014

  • Weidman, Mark C.; Beck, Megan E.; Hoffman, Rachel S.
  • ACS Nano, Vol. 8, Issue 6
  • DOI: 10.1021/nn5018654

2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids
journal, April 2018


Photovoltaic materials: Present efficiencies and future challenges
journal, April 2016


Butylamine-Catalyzed Synthesis of Nanocrystal Inks Enables Efficient Infrared CQD Solar Cells
journal, October 2018

  • Kim, Junghwan; Ouellette, Olivier; Voznyy, Oleksandr
  • Advanced Materials, Vol. 30, Issue 45
  • DOI: 10.1002/adma.201803830

Solution-Processed Short-Wave Infrared PbS Colloidal Quantum Dot/ZnO Nanowire Solar Cells Giving High Open-Circuit Voltage
journal, August 2017


6.5% Certified Efficiency Sb 2 Se 3 Solar Cells Using PbS Colloidal Quantum Dot Film as Hole-Transporting Layer
journal, August 2017


Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth:  “Focusing” of Size Distributions
journal, June 1998

  • Peng, Xiaogang; Wickham, J.; Alivisatos, A. P.
  • Journal of the American Chemical Society, Vol. 120, Issue 21
  • DOI: 10.1021/ja9805425

Infrared Colloidal Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression
journal, August 2015


Multigram Scale, Solventless, and Diffusion-Controlled Route to Highly Monodisperse PbS Nanocrystals
journal, January 2006

  • Cademartiri, Ludovico; Bertolotti, Jacopo; Sapienza, Riccardo
  • The Journal of Physical Chemistry B, Vol. 110, Issue 2
  • DOI: 10.1021/jp0563585

High-Performance Quantum-Dot Solids via Elemental Sulfur Synthesis
journal, March 2014

  • Yuan, Mingjian; Kemp, Kyle W.; Thon, Susanna M.
  • Advanced Materials, Vol. 26, Issue 21
  • DOI: 10.1002/adma.201305912

An essay on synthetic chemistry of colloidal nanocrystals
journal, June 2009


Halide Re-Shelled Quantum Dot Inks for Infrared Photovoltaics
journal, October 2017

  • Fan, James Z.; Liu, Mengxia; Voznyy, Oleksandr
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 43
  • DOI: 10.1021/acsami.7b11449

Size-Dependent Optical Properties of Colloidal PbS Quantum Dots
journal, September 2009

  • Moreels, Iwan; Lambert, Karel; Smeets, Dries
  • ACS Nano, Vol. 3, Issue 10
  • DOI: 10.1021/nn900863a

High-Efficiency Photovoltaic Devices using Trap-Controlled Quantum-Dot Ink prepared via Phase-Transfer Exchange
journal, March 2017

  • Aqoma, Havid; Al Mubarok, Muhibullah; Hadmojo, Wisnu Tantyo
  • Advanced Materials, Vol. 29, Issue 19
  • DOI: 10.1002/adma.201605756

Pushing the Band Gap Envelope:  Mid-Infrared Emitting Colloidal PbSe Quantum Dots
journal, September 2004

  • Pietryga, Jeffrey M.; Schaller, Richard D.; Werder, Donald
  • Journal of the American Chemical Society, Vol. 126, Issue 38
  • DOI: 10.1021/ja047659f

Acid-Assisted Ligand Exchange Enhances Coupling in Colloidal Quantum Dot Solids
journal, June 2018


Ultrastable PbSe Nanocrystal Quantum Dots via in Situ Formation of Atomically Thin Halide Adlayers on PbSe(100)
journal, June 2014

  • Woo, Ju Young; Ko, Jae-Hyeon; Song, Jung Hoon
  • Journal of the American Chemical Society, Vol. 136, Issue 25
  • DOI: 10.1021/ja503957r

Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting
journal, October 2018

  • Sun, Bin; Ouellette, Olivier; García de Arquer, F. Pelayo
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-06342-7

A General Strategy for Synthesizing Colloidal Semiconductor Zinc Chalcogenide Quantum Rods
journal, July 2014

  • Jia, Guohua; Banin, Uri
  • Journal of the American Chemical Society, Vol. 136, Issue 31
  • DOI: 10.1021/ja505541q

Efficient Top-Illuminated Organic-Quantum Dots Hybrid Tandem Solar Cells with Complementary Absorption
journal, April 2017


Quantized Ostwald Ripening of Colloidal Nanoparticles
journal, September 2010

  • Dagtepe, Pinar; Chikan, Viktor
  • The Journal of Physical Chemistry C, Vol. 114, Issue 39
  • DOI: 10.1021/jp105071a

Steric-Hindrance-Driven Shape Transition in PbS Quantum Dots: Understanding Size-Dependent Stability
journal, March 2013

  • Choi, Hyekyoung; Ko, Jae-Hyeon; Kim, Yong-Hyun
  • Journal of the American Chemical Society, Vol. 135, Issue 14
  • DOI: 10.1021/ja400948t

Spontaneous Superlattice Formation in Nanorods Through Partial Cation Exchange
journal, July 2007

  • Robinson, R. D.; Sadtler, B.; Demchenko, D. O.
  • Science, Vol. 317, Issue 5836, p. 355-358
  • DOI: 10.1126/science.1142593

Quasi-Seeded Growth of Ligand-Tailored PbSe Nanocrystals through Cation-Exchange-Mediated Nucleation
journal, April 2008

  • Kovalenko, Maksym V.; Talapin, Dmitri V.; Loi, Maria Antonietta
  • Angewandte Chemie International Edition, Vol. 47, Issue 16
  • DOI: 10.1002/anie.200705604

Combination of Cation Exchange and Quantized Ostwald Ripening for Controlling Size Distribution of Lead Chalcogenide Quantum Dots
journal, April 2017


Highly Effective Surface Passivation of PbSe Quantum Dots through Reaction with Molecular Chlorine
journal, November 2012

  • Bae, Wan Ki; Joo, Jin; Padilha, Lazaro A.
  • Journal of the American Chemical Society, Vol. 134, Issue 49
  • DOI: 10.1021/ja309783v

Size-Tunable, Bright, and Stable PbS Quantum Dots: A Surface Chemistry Study
journal, February 2011

  • Moreels, Iwan; Justo, Yolanda; De Geyter, Bram
  • ACS Nano, Vol. 5, Issue 3
  • DOI: 10.1021/nn103050w

Diffusion-Controlled Synthesis of PbS and PbSe Quantum Dots with in Situ Halide Passivation for Quantum Dot Solar Cells
journal, December 2013

  • Zhang, Jianbing; Gao, Jianbo; Miller, Elisa M.
  • ACS Nano, Vol. 8, Issue 1
  • DOI: 10.1021/nn405236k

Revisiting the Valence and Conduction Band Size Dependence of PbS Quantum Dot Thin Films
journal, February 2016


Controlled Colloidal Growth of Ultrathin Single-Crystal ZnS Nanowires with a Magic-Size Diameter
journal, October 2010

  • Deng, Zhengtao; Yan, Hao; Liu, Yan
  • Angewandte Chemie International Edition, Vol. 49, Issue 46
  • DOI: 10.1002/anie.201003952

Dark and Photo-Conductivity in Ordered Array of Nanocrystals
journal, October 2013

  • Shabaev, Andrew; Efros, Alexander L.; Efros, Alexei L.
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl403033f

Highly Monodispersed PbS Quantum Dots for Outstanding Cascaded-Junction Solar Cells
journal, September 2016


From Sulfur−Amine Solutions to Metal Sulfide Nanocrystals: Peering into the Oleylamine−Sulfur Black Box
journal, April 2011

  • Thomson, Jordan W.; Nagashima, Kaz; Macdonald, Peter M.
  • Journal of the American Chemical Society, Vol. 133, Issue 13
  • DOI: 10.1021/ja1109997