skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on August 8, 2020

Title: Long-duration direct drive hydrodynamics experiments on the National Ignition Facility: Platform development and numerical modeling with CHIC

Abstract

Here, we report on a novel planar direct-drive platform for hydrodynamics experiments on the National Ignition Facility (NIF). Its commissioning has been performed as part of the NIF Discovery Science Program. This platform enables the use of a 30 ns drive at an average intensity of 200 TW/cm 2, creating a planar shock and ablation front over a 2 mm radius. To benchmark the performance of this design, the planarity of both the shock and ablation fronts has been measured between 26 ns and 28 ns after the start of the laser drive in a 3 mm-thick CH foil. The platform was then used to measure late-time Rayleigh-Taylor instability (RTI) growth at the ablation front for a 2D-rippled 300 μm-thick CH foil. Simultaneously, a numerical platform has been developed with the CHIC radiation hydrodynamics code at the CELIA laboratory. The CHIC numerical platform allows, for the first time, a complete simulation of the experiments over 30 ns to be performed. Large-scale simulations recover the trajectory and the 2D RTI growth measurements. They are additionally compared with half-mode simulations performed with identical parameters. We demonstrate that both numerical techniques fit with analytical modeling of RTI growth and discuss plans for futuremore » campaigns.« less

Authors:
ORCiD logo [1];  [1];  [1];  [2]; ORCiD logo [2];  [1]; ORCiD logo [2];  [2];  [2];  [2];  [3]; ORCiD logo [1]; ORCiD logo [2];  [2]; ORCiD logo [2]; ORCiD logo [1]
  1. Université de Bordeaux-CNRS-CEA (France). Centre Lasers Intenses et Applications (CELIA)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1579607
Report Number(s):
LLNL-JRNL-775319
Journal ID: ISSN 1070-664X; 967952
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 26; Journal Issue: 8; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Mailliet, Corentin, Le Bel, E., Ceurvorst, L., Khan, S. F., Martinez, D., Goudal, Th., Izumi, N., Kalantar, D., Di Nicola, P., Di Nicola, J. M., Igumenshchev, I., Tikhonchuk, V. T., Remington, B., Smalyuk, V. A., Masse, L., and Casner, Alexis. Long-duration direct drive hydrodynamics experiments on the National Ignition Facility: Platform development and numerical modeling with CHIC. United States: N. p., 2019. Web. doi:10.1063/1.5110684.
Mailliet, Corentin, Le Bel, E., Ceurvorst, L., Khan, S. F., Martinez, D., Goudal, Th., Izumi, N., Kalantar, D., Di Nicola, P., Di Nicola, J. M., Igumenshchev, I., Tikhonchuk, V. T., Remington, B., Smalyuk, V. A., Masse, L., & Casner, Alexis. Long-duration direct drive hydrodynamics experiments on the National Ignition Facility: Platform development and numerical modeling with CHIC. United States. doi:10.1063/1.5110684.
Mailliet, Corentin, Le Bel, E., Ceurvorst, L., Khan, S. F., Martinez, D., Goudal, Th., Izumi, N., Kalantar, D., Di Nicola, P., Di Nicola, J. M., Igumenshchev, I., Tikhonchuk, V. T., Remington, B., Smalyuk, V. A., Masse, L., and Casner, Alexis. Thu . "Long-duration direct drive hydrodynamics experiments on the National Ignition Facility: Platform development and numerical modeling with CHIC". United States. doi:10.1063/1.5110684.
@article{osti_1579607,
title = {Long-duration direct drive hydrodynamics experiments on the National Ignition Facility: Platform development and numerical modeling with CHIC},
author = {Mailliet, Corentin and Le Bel, E. and Ceurvorst, L. and Khan, S. F. and Martinez, D. and Goudal, Th. and Izumi, N. and Kalantar, D. and Di Nicola, P. and Di Nicola, J. M. and Igumenshchev, I. and Tikhonchuk, V. T. and Remington, B. and Smalyuk, V. A. and Masse, L. and Casner, Alexis},
abstractNote = {Here, we report on a novel planar direct-drive platform for hydrodynamics experiments on the National Ignition Facility (NIF). Its commissioning has been performed as part of the NIF Discovery Science Program. This platform enables the use of a 30 ns drive at an average intensity of 200 TW/cm2, creating a planar shock and ablation front over a 2 mm radius. To benchmark the performance of this design, the planarity of both the shock and ablation fronts has been measured between 26 ns and 28 ns after the start of the laser drive in a 3 mm-thick CH foil. The platform was then used to measure late-time Rayleigh-Taylor instability (RTI) growth at the ablation front for a 2D-rippled 300 μm-thick CH foil. Simultaneously, a numerical platform has been developed with the CHIC radiation hydrodynamics code at the CELIA laboratory. The CHIC numerical platform allows, for the first time, a complete simulation of the experiments over 30 ns to be performed. Large-scale simulations recover the trajectory and the 2D RTI growth measurements. They are additionally compared with half-mode simulations performed with identical parameters. We demonstrate that both numerical techniques fit with analytical modeling of RTI growth and discuss plans for future campaigns.},
doi = {10.1063/1.5110684},
journal = {Physics of Plasmas},
number = 8,
volume = 26,
place = {United States},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on August 8, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Progress towards ignition on the National Ignition Facility
journal, July 2013

  • Edwards, M. J.; Patel, P. K.; Lindl, J. D.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4816115

Suppression of Laser Nonuniformity Imprinting Using a Thin High- Z Coating
journal, February 2015


Review of the National Ignition Campaign 2009-2012
journal, February 2014

  • Lindl, John; Landen, Otto; Edwards, John
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4865400

Laser Imprint Reduction Using a Low-Density Foam Buffer as a Thermal Smoothing Layer at 351-nm Wavelength
journal, November 1998


Optical smoothing of laser imprinting in planar-target experiments on OMEGA EP using multi-FM 1-D smoothing by spectral dispersion
journal, September 2016

  • Hohenberger, M.; Shvydky, A.; Marozas, J. A.
  • Physics of Plasmas, Vol. 23, Issue 9
  • DOI: 10.1063/1.4962185

Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma
journal, February 2018


Design of a supernova-relevant Rayleigh–Taylor experiment on the National Ignition Facility. I. Planar target design and diagnostics
journal, September 2014


High-precision measurements of the equation of state of hydrocarbons at 1–10 Mbar using laser-driven shock waves
journal, May 2010

  • Barrios, M. A.; Hicks, D. G.; Boehly, T. R.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3358144

Measurements of laser-imprinting sensitivity to relative beam mistiming in planar plastic foils driven by multiple overlapping laser beams
journal, July 2005

  • Smalyuk, V. A.; Goncharov, V. N.; Boehly, T. R.
  • Physics of Plasmas, Vol. 12, Issue 7
  • DOI: 10.1063/1.1943900

Direct observation of mass oscillations due to ablative Richtmyer–Meshkov instability and feedout in planar plastic targets
journal, May 2002

  • Aglitskiy, Y.; Velikovich, A. L.; Karasik, M.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1459459

Deceleration phase of inertial confinement fusion implosions
journal, May 2002

  • Betti, R.; Anderson, K.; Goncharov, V. N.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1459458

Instabilities of ablation fronts in inertial confinement fusion: A comparison with flames
journal, February 2004


How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants
journal, April 2018


Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system
journal, January 2000

  • Knauer, J. P.; Betti, R.; Bradley, D. K.
  • Physics of Plasmas, Vol. 7, Issue 1
  • DOI: 10.1063/1.873802

Measurement of the shell decompression in direct-drive inertial-confinement-fusion implosions
journal, May 2017


Progress in indirect and direct-drive planar experiments on hydrodynamic instabilities at the ablation front
journal, December 2014

  • Casner, A.; Masse, L.; Delorme, B.
  • Physics of Plasmas, Vol. 21, Issue 12
  • DOI: 10.1063/1.4903331

Insulator-metal transition in dense fluid deuterium
journal, August 2018


Multi-material ALE computation in inertial confinement fusion code CHIC
journal, July 2011


Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated x-ray detectors (invited)
journal, October 2010

  • Kyrala, G. A.; Dixit, S.; Glenzer, S.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3481028

Direct Observation of Mass Oscillations Due to Ablative Richtmyer-Meshkov Instability in Plastic Targets
journal, December 2001


Three- and two-dimensional simulations of counter-propagating shear experiments at high energy densities at the National Ignition Facility
journal, November 2015

  • Wang, Ping; Zhou, Ye; MacLaren, Stephan A.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4934612

The Shock/Shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facilitya)
journal, May 2015

  • Doss, F. W.; Kline, J. L.; Flippo, K. A.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4918354

The National Ignition Facility: Ushering in a new age for high energy density science
journal, April 2009

  • Moses, E. I.; Boyd, R. N.; Remington, B. A.
  • Physics of Plasmas, Vol. 16, Issue 4
  • DOI: 10.1063/1.3116505

From ICF to laboratory astrophysics: ablative and classical Rayleigh–Taylor instability experiments in turbulent-like regimes
journal, December 2018


Modeling of aspheric, diverging hydrodynamic instability experiments on the National Ignition Facility
journal, September 2013


A model of laser imprinting
journal, May 2000

  • Goncharov, V. N.; Skupsky, S.; Boehly, T. R.
  • Physics of Plasmas, Vol. 7, Issue 5
  • DOI: 10.1063/1.874028

Conceptual design of a Rayleigh–Taylor experiment to study bubble merger in two dimensions on NIF
journal, June 2014


Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion
journal, May 1998

  • Betti, R.; Goncharov, V. N.; McCrory, R. L.
  • Physics of Plasmas, Vol. 5, Issue 5
  • DOI: 10.1063/1.872802

Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo
journal, April 2017

  • Tzeferacos, P.; Rigby, A.; Bott, A.
  • Physics of Plasmas, Vol. 24, Issue 4
  • DOI: 10.1063/1.4978628

Designs for highly nonlinear ablative Rayleigh-Taylor experiments on the National Ignition Facility
journal, August 2012

  • Casner, A.; Smalyuk, V. A.; Masse, L.
  • Physics of Plasmas, Vol. 19, Issue 8
  • DOI: 10.1063/1.4737901

Growth rate and the cutoff wavelength of the Darrieus-Landau instability in laser ablation
journal, October 2009


Rayleigh-Taylor growth measurements of three-dimensional modulations in a nonlinear regime
journal, May 2006

  • Smalyuk, V. A.; Sadot, O.; Betti, R.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2174826

Stability study of planar targets using standard and adiabat shaping pulses
journal, October 2007

  • Olazabal-Loumé, M.; Hallo, L.
  • Physics of Plasmas, Vol. 14, Issue 10
  • DOI: 10.1063/1.2792336

Spherical shock-ignition experiments with the 40 + 20-beam configuration on OMEGA
journal, October 2012

  • Theobald, W.; Nora, R.; Lafon, M.
  • Physics of Plasmas, Vol. 19, Issue 10
  • DOI: 10.1063/1.4763556

Compression phase study of the HiPER baseline target
journal, January 2008


Experimental demonstration of laser imprint reduction using underdense foams
journal, April 2016

  • Delorme, B.; Olazabal-Loumé, M.; Casner, A.
  • Physics of Plasmas, Vol. 23, Issue 4
  • DOI: 10.1063/1.4945619

Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution
journal, January 2006

  • Goncharov, V. N.; Gotchev, O. V.; Vianello, E.
  • Physics of Plasmas, Vol. 13, Issue 1
  • DOI: 10.1063/1.2162803

Fourier-Space Nonlinear Rayleigh-Taylor Growth Measurements of 3D Laser-Imprinted Modulations in Planar Targets
journal, November 2005


Evidence for a Bubble-Competition Regime in Indirectly Driven Ablative Rayleigh-Taylor Instability Experiments on the NIF
journal, May 2015


Improved laser‐beam uniformity using the angular dispersion of frequency‐modulated light
journal, October 1989

  • Skupsky, S.; Short, R. W.; Kessler, T.
  • Journal of Applied Physics, Vol. 66, Issue 8
  • DOI: 10.1063/1.344101

Mitigating laser-imprint effects in direct-drive inertial confinement fusion implosions with an above-critical-density foam layer
journal, August 2018

  • Hu, S. X.; Theobald, W.; Radha, P. B.
  • Physics of Plasmas, Vol. 25, Issue 8
  • DOI: 10.1063/1.5044609

Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

The National Ignition Facility
journal, December 2004


Direct-drive inertial confinement fusion: A review
journal, November 2015

  • Craxton, R. S.; Anderson, K. S.; Boehly, T. R.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4934714

Self‐consistent stability analysis of ablation fronts in inertial confinement fusion
journal, May 1996

  • Betti, R.; Goncharov, V. N.; McCrory, R. L.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.871664

Studies on targets for inertial fusion ignition demonstration at the HiPER facility
journal, April 2009


Late-Time Mixing Sensitivity to Initial Broadband Surface Roughness in High-Energy-Density Shear Layers
journal, November 2016


Long-duration planar direct-drive hydrodynamics experiments on the NIF
journal, October 2017

  • Casner, A.; Mailliet, C.; Khan, S. F.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 1
  • DOI: 10.1088/1361-6587/aa8af4

Hydrodynamic and symmetry safety factors of HiPER's targets
journal, December 2008


Theory of the Ablative Richtmyer-Meshkov Instability
journal, March 1999