skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on December 11, 2020

Title: Model systems for screening and investigation of lithium metal electrode chemistry and dendrite formation

Abstract

A simple approach based on first principles leads to investigation of the origins of dendritic growth.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Department of Chemical Engineering, Texas A&M University, College Station, USA
Publication Date:
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1579578
Grant/Contract Number:  
EE-0008210; EE0007766
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP (Print)
Additional Journal Information:
Journal Name: Physical Chemistry Chemical Physics. PCCP (Print) Journal Volume: 22 Journal Issue: 2; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry (RSC)
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Kamphaus, Ethan P., Hight, Karoline, Dermott, Micah, and Balbuena, Perla B. Model systems for screening and investigation of lithium metal electrode chemistry and dendrite formation. United Kingdom: N. p., 2020. Web. doi:10.1039/C9CP06020K.
Kamphaus, Ethan P., Hight, Karoline, Dermott, Micah, & Balbuena, Perla B. Model systems for screening and investigation of lithium metal electrode chemistry and dendrite formation. United Kingdom. doi:10.1039/C9CP06020K.
Kamphaus, Ethan P., Hight, Karoline, Dermott, Micah, and Balbuena, Perla B. Thu . "Model systems for screening and investigation of lithium metal electrode chemistry and dendrite formation". United Kingdom. doi:10.1039/C9CP06020K.
@article{osti_1579578,
title = {Model systems for screening and investigation of lithium metal electrode chemistry and dendrite formation},
author = {Kamphaus, Ethan P. and Hight, Karoline and Dermott, Micah and Balbuena, Perla B.},
abstractNote = {A simple approach based on first principles leads to investigation of the origins of dendritic growth.},
doi = {10.1039/C9CP06020K},
journal = {Physical Chemistry Chemical Physics. PCCP (Print)},
number = 2,
volume = 22,
place = {United Kingdom},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on December 11, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Dendrite formation in Li-metal anodes: an atomistic molecular dynamics study
journal, January 2019

  • Selis, Luis A.; Seminario, Jorge M.
  • RSC Advances, Vol. 9, Issue 48
  • DOI: 10.1039/C9RA05067A

Theoretical studies of the global minima and polarizabilities of small lithium clusters
journal, January 2016


In Situ TEM Investigation of Electron Irradiation Induced Metastable States in Lithium-Ion Battery Cathodes: Li 2 FeSiO 4 versus LiFePO 4
journal, June 2018

  • Wei, Bin; Lu, Xia; Voisard, Frédéric
  • ACS Applied Energy Materials, Vol. 1, Issue 7
  • DOI: 10.1021/acsaem.8b00391

Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Formation and Growth Mechanisms of Solid-Electrolyte Interphase Layers in Rechargeable Batteries
journal, November 2015


Fitting Molecular Electrostatic Potentials from Quantum Mechanical Calculations
journal, March 2007

  • Hu, Hao; Lu, Zhenyu; Yang, Weitao
  • Journal of Chemical Theory and Computation, Vol. 3, Issue 3
  • DOI: 10.1021/ct600295n

Evaluation and Stability of PEDOT Polymer Electrodes for Li–O 2 Batteries
journal, September 2016

  • Amanchukwu, Chibueze V.; Gauthier, Magali; Batcho, Thomas P.
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 19
  • DOI: 10.1021/acs.jpclett.6b01986

Reactivity at the Lithium–Metal Anode Surface of Lithium–Sulfur Batteries
journal, November 2015

  • Camacho-Forero, Luis E.; Smith, Taylor W.; Bertolini, Samuel
  • The Journal of Physical Chemistry C, Vol. 119, Issue 48
  • DOI: 10.1021/acs.jpcc.5b08254

A new population analysis based on atomic polar tensors
journal, October 1989

  • Cioslowski, J.
  • Journal of the American Chemical Society, Vol. 111, Issue 22
  • DOI: 10.1021/ja00204a001

From Isolated Ions to Multilayer Functional Materials Using Ion Soft Landing
journal, November 2018

  • Laskin, Julia; Johnson, Grant E.; Warneke, Jonas
  • Angewandte Chemie International Edition, Vol. 57, Issue 50
  • DOI: 10.1002/anie.201712296

Non-Nuclear Attractor in a Molecular Compound under External Pressure: Non-Nuclear Attractor in a Molecular Compound under External Pressure
journal, October 2014

  • Wu, Lai-Chin; Jones, Cameron; Stasch, Andreas
  • European Journal of Inorganic Chemistry, Vol. 2014, Issue 32
  • DOI: 10.1002/ejic.201402606

The formation and stability of the solid electrolyte interface on the graphite anode
journal, December 2014


Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries
journal, June 2017


A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes
journal, January 2018

  • Li, Nian-Wu; Shi, Yang; Yin, Ya-Xia
  • Angewandte Chemie International Edition, Vol. 57, Issue 6
  • DOI: 10.1002/anie.201710806

Role of Inorganic Surface Layer on Solid Electrolyte Interphase Evolution at Li-Metal Anodes
journal, August 2019

  • Kamphaus, Ethan P.; Angarita-Gomez, Stefany; Qin, Xueping
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 34
  • DOI: 10.1021/acsami.9b07587

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode
journal, January 2017

  • Camacho-Forero, Luis E.; Balbuena, Perla B.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 45
  • DOI: 10.1039/C7CP06485C

A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements
journal, August 1988

  • Petersson, G. A.; Bennett, Andrew; Tensfeldt, Thomas G.
  • The Journal of Chemical Physics, Vol. 89, Issue 4
  • DOI: 10.1063/1.455064

Systematic Theoretical Study of Non-nuclear Electron Density Maxima in Some Diatomic Molecules
journal, September 2013

  • Terrabuio, Luiz A.; Teodoro, Tiago Q.; Rachid, Marina G.
  • The Journal of Physical Chemistry A, Vol. 117, Issue 40
  • DOI: 10.1021/jp406992q

Nanoscale Imaging of Fundamental Li Battery Chemistry: Solid-Electrolyte Interphase Formation and Preferential Growth of Lithium Metal Nanoclusters
journal, February 2015

  • Sacci, Robert L.; Black, Jennifer M.; Balke, Nina
  • Nano Letters, Vol. 15, Issue 3
  • DOI: 10.1021/nl5048626

Simulation and Experiment on Solid Electrolyte Interphase (SEI) Morphology Evolution and Lithium-Ion Diffusion
journal, January 2015

  • Guan, Pengjian; Liu, Lin; Lin, Xianke
  • Journal of The Electrochemical Society, Vol. 162, Issue 9
  • DOI: 10.1149/2.0521509jes

A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms
journal, May 1991

  • Petersson, G. A.; Al‐Laham, Mohammad A.
  • The Journal of Chemical Physics, Vol. 94, Issue 9
  • DOI: 10.1063/1.460447

Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions
journal, May 1992

  • Kendall, Rick A.; Dunning, Thom H.; Harrison, Robert J.
  • The Journal of Chemical Physics, Vol. 96, Issue 9
  • DOI: 10.1063/1.462569

Factors of Kinetics Processes in Lithium–Sulfur Reactions
journal, May 2019


Mixed Mode Growth Model for the Solid Electrolyte Interface (SEI)
journal, January 2019

  • Kamyab, Niloofar; Weidner, John W.; White, Ralph E.
  • Journal of The Electrochemical Society, Vol. 166, Issue 2
  • DOI: 10.1149/2.1101902jes

An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes
journal, December 2016

  • Liu, Yayuan; Lin, Dingchang; Yuen, Pak Yan
  • Advanced Materials, Vol. 29, Issue 10
  • DOI: 10.1002/adma.201605531

Interfaces in Solid-State Lithium Batteries
journal, October 2018


In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries
journal, May 2017

  • Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.
  • Chemistry of Materials, Vol. 29, Issue 11
  • DOI: 10.1021/acs.chemmater.7b00374

Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy
journal, October 2016


Towards High-Safe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy
journal, July 2016


Quantum Mechanical Continuum Solvation Models
journal, August 2005

  • Tomasi, Jacopo; Mennucci, Benedetta; Cammi, Roberto
  • Chemical Reviews, Vol. 105, Issue 8
  • DOI: 10.1021/cr9904009

Combining theory and experiment in electrocatalysis: Insights into materials design
journal, January 2017


Bulk Nanostructured Materials Design for Fracture‐Resistant Lithium Metal Anodes
journal, February 2019


Materials for lithium-ion battery safety
journal, June 2018


GEPOL: An improved description of molecular surfaces. III. A new algorithm for the computation of a solvent-excluding surface: GEPOL
journal, October 1994

  • Pascual-ahuir, J. L.; Silla, E.; Tuñon, I.
  • Journal of Computational Chemistry, Vol. 15, Issue 10
  • DOI: 10.1002/jcc.540151009

Review—SEI: Past, Present and Future
journal, January 2017

  • Peled, E.; Menkin, S.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1441707jes