skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on June 16, 2020

Title: Renewable electricity storage using electrolysis

Abstract

Electrolysis converts electrical energy into chemical energy by storing electrons in the form of stable chemical bonds. The chemical energy can be used as a fuel or converted back to electricity when needed. Water electrolysis to hydrogen and oxygen is a well-established technology, whereas fundamental advances in CO 2 electrolysis are still needed to enable short-term and seasonal energy storage in the form of liquid fuels. This paper discusses the electrolytic reactions that can potentially enable renewable energy storage, including water, CO 2 and N 2 electrolysis. Recent progress and major obstacles associated with electrocatalysis and mass transfer management at a system level are reviewed. We conclude that knowledge and strategies are transferable between these different electrochemical technologies, although there are also unique complications that arise from the specifics of the reactions involved.

Authors:
; ; ;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1579573
Grant/Contract Number:  
FG02- 07ER15911
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America; Journal ID: ISSN 0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Country of Publication:
United States
Language:
English

Citation Formats

Yan, Zhifei, Hitt, Jeremy L., Turner, John A., and Mallouk, Thomas E. Renewable electricity storage using electrolysis. United States: N. p., 2019. Web. doi:10.1073/pnas.1821686116.
Yan, Zhifei, Hitt, Jeremy L., Turner, John A., & Mallouk, Thomas E. Renewable electricity storage using electrolysis. United States. doi:10.1073/pnas.1821686116.
Yan, Zhifei, Hitt, Jeremy L., Turner, John A., and Mallouk, Thomas E. Mon . "Renewable electricity storage using electrolysis". United States. doi:10.1073/pnas.1821686116.
@article{osti_1579573,
title = {Renewable electricity storage using electrolysis},
author = {Yan, Zhifei and Hitt, Jeremy L. and Turner, John A. and Mallouk, Thomas E.},
abstractNote = {Electrolysis converts electrical energy into chemical energy by storing electrons in the form of stable chemical bonds. The chemical energy can be used as a fuel or converted back to electricity when needed. Water electrolysis to hydrogen and oxygen is a well-established technology, whereas fundamental advances in CO 2 electrolysis are still needed to enable short-term and seasonal energy storage in the form of liquid fuels. This paper discusses the electrolytic reactions that can potentially enable renewable energy storage, including water, CO 2 and N 2 electrolysis. Recent progress and major obstacles associated with electrocatalysis and mass transfer management at a system level are reviewed. We conclude that knowledge and strategies are transferable between these different electrochemical technologies, although there are also unique complications that arise from the specifics of the reactions involved.},
doi = {10.1073/pnas.1821686116},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = ,
volume = ,
place = {United States},
year = {2019},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on June 16, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

(La0.75Sr0.25)0.95Mn0.5Cr0.5O3 as the cathode of solid oxide electrolysis cells for high temperature hydrogen production from steam
journal, January 2008

  • Yang, Xuedi; Irvine, John T. S.
  • Journal of Materials Chemistry, Vol. 18, Issue 20
  • DOI: 10.1039/b800163d

What would it take for renewably powered electrosynthesis to displace petrochemical processes?
journal, April 2019


Hydrogen evolution on electrodeposited nickel-cobalt-molybdenum in alkaline water electrolysis
journal, December 1994


Electrochemical CO2 Reduction on Metal Electrodes
book, January 2008


Progress in the Electrochemical Synthesis of Ammonia
journal, May 2017


Selective Electroreduction of CO 2 toward Ethylene on Nano Dendritic Copper Catalysts at High Current Density
journal, January 2017

  • Reller, Christian; Krause, Ralf; Volkova, Elena
  • Advanced Energy Materials, Vol. 7, Issue 12
  • DOI: 10.1002/aenm.201602114

A theoretical evaluation of possible transition metal electro-catalysts for N 2 reduction
journal, January 2012

  • Skúlason, Egill; Bligaard, Thomas; Gudmundsdóttir, Sigrídur
  • Phys. Chem. Chem. Phys., Vol. 14, Issue 3
  • DOI: 10.1039/c1cp22271f

Dissolution of Noble Metals during Oxygen Evolution in Acidic Media
journal, July 2014

  • Cherevko, Serhiy; Zeradjanin, Aleksandar R.; Topalov, Angel A.
  • ChemCatChem, Vol. 6, Issue 8
  • DOI: 10.1002/cctc.201402194

Designing fast oxide-ion conductors based on La2Mo2O9
journal, April 2000

  • Lacorre, Philippe; Goutenoire, François; Bohnke, Odile
  • Nature, Vol. 404, Issue 6780
  • DOI: 10.1038/35009069

Nanoporous Copper–Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO 2 to Ethylene and Ethanol
journal, April 2018

  • Hoang, Thao T. H.; Verma, Sumit; Ma, Sichao
  • Journal of the American Chemical Society, Vol. 140, Issue 17
  • DOI: 10.1021/jacs.8b01868

Opportunities for hydrogen production in connection with wind power in weak grids
journal, June 2008


Oxygen permeability of mixed-conducting composite membranes: effects of phase interaction
journal, April 2005

  • Shaula, A. L.; Kharton, V. V.; Marques, F. M. B.
  • Journal of Solid State Electrochemistry, Vol. 10, Issue 1
  • DOI: 10.1007/s10008-005-0650-1

Opportunities and challenges for a sustainable energy future
journal, August 2012

  • Chu, Steven; Majumdar, Arun
  • Nature, Vol. 488, Issue 7411, p. 294-303
  • DOI: 10.1038/nature11475

Copper nanoparticle ensembles for selective electroreduction of CO 2 to C 2 –C 3 products
journal, September 2017

  • Kim, Dohyung; Kley, Christopher S.; Li, Yifan
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 40
  • DOI: 10.1073/pnas.1711493114

Study of the Kinetics of Hydrogen Evolution Reaction on Nickel-Zinc Alloy Electrodes
journal, January 1991

  • Chen, Linlin
  • Journal of The Electrochemical Society, Vol. 138, Issue 11
  • DOI: 10.1149/1.2085409

Tuning the Selectivity of Carbon Dioxide Electroreduction toward Ethanol on Oxide-Derived Cu x Zn Catalysts
journal, November 2016


Hybrid-solid oxide electrolysis cell: A new strategy for efficient hydrogen production
journal, February 2018


Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces
journal, January 2013

  • Sheng, Wenchao; Myint, MyatNoeZin; Chen, Jingguang G.
  • Energy & Environmental Science, Vol. 6, Issue 5
  • DOI: 10.1039/c3ee00045a

Role of synthetic route on the transport properties of BaCe1−xYxO3 proton conductor
journal, February 2009

  • Chiodelli, Gaetano; Malavasi, Lorenzo; Tealdi, Cristina
  • Journal of Alloys and Compounds, Vol. 470, Issue 1-2
  • DOI: 10.1016/j.jallcom.2008.03.011

Erratum: Corrigendum: Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies
journal, February 2016

  • Li, Hong; Tsai, Charlie; Koh, Ai Leen
  • Nature Materials, Vol. 15, Issue 3
  • DOI: 10.1038/nmat4564

Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes
journal, March 2017

  • Ledezma-Yanez, Isis; Wallace, W. David Z.; Sebastián-Pascual, Paula
  • Nature Energy, Vol. 2, Issue 4
  • DOI: 10.1038/nenergy.2017.31

Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces
journal, March 2011

  • Man, Isabela C.; Su, Hai‐Yan; Calle‐Vallejo, Federico
  • ChemCatChem, Vol. 3, Issue 7
  • DOI: 10.1002/cctc.201000397

Sustainable Hydrogen Production
journal, August 2004


Electrochemical enhancement of ammonia synthesis in a BaZr0.7Ce0.2Y0.1O2.9 solid electrolyte cell
journal, May 2016


Understanding Trends in the Electrocatalytic Activity of Metals and Enzymes for CO 2 Reduction to CO
journal, January 2013

  • Hansen, Heine A.; Varley, Joel B.; Peterson, Andrew A.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 3
  • DOI: 10.1021/jz3021155

Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption
journal, February 2013

  • Strmcnik, Dusan; Uchimura, Masanobu; Wang, Chao
  • Nature Chemistry, Vol. 5, Issue 4
  • DOI: 10.1038/nchem.1574

Electrochemical Synthesis of Ammonia: A Low Pressure, Low Temperature Approach
journal, January 2015

  • Renner, J. N.; Greenlee, L. F.; Ayres, K. E.
  • Interface magazine, Vol. 24, Issue 2
  • DOI: 10.1149/2.F04152if

Investigation of Anodic Reaction of Electrolytic Ammonia Synthesis in Molten Salts Under Atmospheric Pressure
journal, January 2005

  • Murakami, Tsuyoshi; Nishikiori, Tokujiro; Nohira, Toshiyuki
  • Journal of The Electrochemical Society, Vol. 152, Issue 5
  • DOI: 10.1149/1.1874752

Binding Site Diversity Promotes CO 2 Electroreduction to Ethanol
journal, May 2019

  • Li, Yuguang C.; Wang, Ziyun; Yuan, Tiange
  • Journal of the American Chemical Society, Vol. 141, Issue 21
  • DOI: 10.1021/jacs.9b02945

Protonic conduction in Zr-substituted BaCeO3
journal, December 2000


Robust solid oxide cells for alternate power generation and carbon conversion
journal, January 2011

  • Ge, Xiaoming; Zhang, Lan; Fang, Yanan
  • RSC Advances, Vol. 1, Issue 4
  • DOI: 10.1039/c1ra00355k

Energy storage for mitigating the variability of renewable electricity sources: An updated review
journal, December 2010

  • Beaudin, Marc; Zareipour, Hamidreza; Schellenberglabe, Anthony
  • Energy for Sustainable Development, Vol. 14, Issue 4
  • DOI: 10.1016/j.esd.2010.09.007

Bipolar Membranes Inhibit Product Crossover in CO 2 Electrolysis Cells
journal, March 2018

  • Li, Yuguang C.; Yan, Zhifei; Hitt, Jeremy
  • Advanced Sustainable Systems, Vol. 2, Issue 4
  • DOI: 10.1002/adsu.201700187

CO 2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface
journal, May 2018


Fabrication and modification of solid oxide fuel cell anodes via wet impregnation/infiltration technique
journal, September 2013


Intermediate temperature solid oxide fuel cells
journal, January 2008

  • Brett, Daniel J. L.; Atkinson, Alan; Brandon, Nigel P.
  • Chemical Society Reviews, Vol. 37, Issue 8
  • DOI: 10.1039/b612060c

Electrochemical Activation of CO 2 through Atomic Ordering Transformations of AuCu Nanoparticles
journal, June 2017

  • Kim, Dohyung; Xie, Chenlu; Becknell, Nigel
  • Journal of the American Chemical Society, Vol. 139, Issue 24
  • DOI: 10.1021/jacs.7b03516

Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration
journal, August 2016


How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
journal, January 2010

  • Peterson, Andrew A.; Abild-Pedersen, Frank; Studt, Felix
  • Energy & Environmental Science, Vol. 3, Issue 9
  • DOI: 10.1039/c0ee00071j

Charge Transfer Stabilization of Late Transition Metal Oxide Nanoparticles on a Layered Niobate Support
journal, December 2015

  • Strayer, Megan E.; Senftle, Thomas P.; Winterstein, Jonathan P.
  • Journal of the American Chemical Society, Vol. 137, Issue 51
  • DOI: 10.1021/jacs.5b11230

Cooperative insertion of CO2 in diamine-appended metal-organic frameworks
journal, March 2015

  • McDonald, Thomas M.; Mason, Jarad A.; Kong, Xueqian
  • Nature, Vol. 519, Issue 7543
  • DOI: 10.1038/nature14327

Energy efficiency improvements in ammonia production—perspectives and uncertainties
journal, October 2005


Preparation of Mesoporous Sb-, F-, and In-Doped SnO 2 Bulk Powder with High Surface Area for Use as Catalyst Supports in Electrolytic Cells
journal, January 2015

  • Oh, Hyung-Suk; Nong, Hong Nhan; Strasser, Peter
  • Advanced Functional Materials, Vol. 25, Issue 7
  • DOI: 10.1002/adfm.201401919

Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency
journal, January 2019

  • Choi, Sihyuk; Davenport, Timothy C.; Haile, Sossina M.
  • Energy & Environmental Science, Vol. 12, Issue 1
  • DOI: 10.1039/C8EE02865F

Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review
journal, February 2018


Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction
journal, June 2013

  • Popczun, Eric J.; McKone, James R.; Read, Carlos G.
  • Journal of the American Chemical Society, Vol. 135, Issue 25
  • DOI: 10.1021/ja403440e

Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide
journal, September 2015

  • Kortlever, Ruud; Shen, Jing; Schouten, Klaas Jan P.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 20
  • DOI: 10.1021/acs.jpclett.5b01559

Robust and synthesizable photocatalysts for CO2 reduction: a data-driven materials discovery
journal, January 2019

  • Singh, Arunima K.; Montoya, Joseph H.; Gregoire, John M.
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-08356-1

Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols
journal, June 2018


CO 2 Electrolysis to CO and O 2 at High Selectivity, Stability and Efficiency Using Sustainion Membranes
journal, January 2018

  • Liu, Zengcai; Yang, Hongzhou; Kutz, Robert
  • Journal of The Electrochemical Society, Vol. 165, Issue 15
  • DOI: 10.1149/2.0501815jes