DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices

Abstract

The large-scale synthesis of high-quality thin films with extensive tunability derived from molecular building blocks will advance the development of artificial solids with designed functionalities. We report the synthesis of two-dimensional (2D) porphyrin polymer films with wafer-scale homogeneity in the ultimate limit of monolayer thickness by growing films at a sharp pentane/water interface, which allows the fabrication of their hybrid superlattices. Laminar assembly polymerization of porphyrin monomers could form monolayers of metal-organic frameworks with Cu 2+ linkers or covalent organic frameworks with terephthalaldehyde linkers. Both the lattice structures and optical properties of these 2D films were directly controlled by the molecular monomers and polymerization chemistries. The 2D polymers were used to fabricate arrays of hybrid superlattices with molybdenum disulfide that could be used in electrical capacitors.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [4]; ORCiD logo [5];  [1];  [6]; ORCiD logo [7]; ORCiD logo [8]; ORCiD logo [2]; ORCiD logo [9]; ORCiD logo [10]
  1. Department of Chemistry, University of Chicago, Chicago, IL 60637, USA.
  2. Department of Chemistry, University of Chicago, Chicago, IL 60637, USA., James Franck Institute, University of Chicago, Chicago, IL 60637, USA.
  3. Department of Physics, Cornell University, Ithaca, NY 14853, USA.
  4. Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA., Department of Physics, Ajou University, Suwon 16499, Republic of Korea.
  5. Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA.
  6. Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA., School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
  7. James Franck Institute, University of Chicago, Chicago, IL 60637, USA.
  8. Department of Chemistry, University of Chicago, Chicago, IL 60637, USA., James Franck Institute, University of Chicago, Chicago, IL 60637, USA., Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
  9. School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
  10. Department of Chemistry, University of Chicago, Chicago, IL 60637, USA., James Franck Institute, University of Chicago, Chicago, IL 60637, USA., Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); Camille and Henry Dreyfus Foundation; Air Force Research Laboratory (AFRL) - Air Force Office of Scientific Research (AFOSR)
OSTI Identifier:
1579406
Alternate Identifier(s):
OSTI ID: 1615766
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Published Article
Journal Name:
Science
Additional Journal Information:
Journal Name: Science Journal Volume: 366 Journal Issue: 6471; Journal ID: ISSN 0036-8075
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Zhong, Yu, Cheng, Baorui, Park, Chibeom, Ray, Ariana, Brown, Sarah, Mujid, Fauzia, Lee, Jae-Ung, Zhou, Hua, Suh, Joonki, Lee, Kan-Heng, Mannix, Andrew J., Kang, Kibum, Sibener, S. J., Muller, David A., and Park, Jiwoong. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. United States: N. p., 2019. Web. doi:10.1126/science.aax9385.
Zhong, Yu, Cheng, Baorui, Park, Chibeom, Ray, Ariana, Brown, Sarah, Mujid, Fauzia, Lee, Jae-Ung, Zhou, Hua, Suh, Joonki, Lee, Kan-Heng, Mannix, Andrew J., Kang, Kibum, Sibener, S. J., Muller, David A., & Park, Jiwoong. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. United States. https://doi.org/10.1126/science.aax9385
Zhong, Yu, Cheng, Baorui, Park, Chibeom, Ray, Ariana, Brown, Sarah, Mujid, Fauzia, Lee, Jae-Ung, Zhou, Hua, Suh, Joonki, Lee, Kan-Heng, Mannix, Andrew J., Kang, Kibum, Sibener, S. J., Muller, David A., and Park, Jiwoong. Thu . "Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices". United States. https://doi.org/10.1126/science.aax9385.
@article{osti_1579406,
title = {Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices},
author = {Zhong, Yu and Cheng, Baorui and Park, Chibeom and Ray, Ariana and Brown, Sarah and Mujid, Fauzia and Lee, Jae-Ung and Zhou, Hua and Suh, Joonki and Lee, Kan-Heng and Mannix, Andrew J. and Kang, Kibum and Sibener, S. J. and Muller, David A. and Park, Jiwoong},
abstractNote = {The large-scale synthesis of high-quality thin films with extensive tunability derived from molecular building blocks will advance the development of artificial solids with designed functionalities. We report the synthesis of two-dimensional (2D) porphyrin polymer films with wafer-scale homogeneity in the ultimate limit of monolayer thickness by growing films at a sharp pentane/water interface, which allows the fabrication of their hybrid superlattices. Laminar assembly polymerization of porphyrin monomers could form monolayers of metal-organic frameworks with Cu 2+ linkers or covalent organic frameworks with terephthalaldehyde linkers. Both the lattice structures and optical properties of these 2D films were directly controlled by the molecular monomers and polymerization chemistries. The 2D polymers were used to fabricate arrays of hybrid superlattices with molybdenum disulfide that could be used in electrical capacitors.},
doi = {10.1126/science.aax9385},
journal = {Science},
number = 6471,
volume = 366,
place = {United States},
year = {Thu Nov 07 00:00:00 EST 2019},
month = {Thu Nov 07 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1126/science.aax9385

Citation Metrics:
Cited by: 157 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Structural Characterization of a Covalent Monolayer Sheet Obtained by Two-Dimensional Polymerization at an Air/Water Interface
journal, November 2017

  • Müller, Vivian; Shao, Feng; Baljozovic, Milos
  • Angewandte Chemie International Edition, Vol. 56, Issue 48
  • DOI: 10.1002/anie.201707140

High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework
journal, October 2018


Mixed-dimensional van der Waals heterostructures
journal, August 2016

  • Jariwala, Deep; Marks, Tobin J.; Hersam, Mark C.
  • Nature Materials, Vol. 16, Issue 2
  • DOI: 10.1038/nmat4703

Chemistry of Covalent Organic Frameworks
journal, November 2015


Synthesis of Free-Standing, Monolayered Organometallic Sheets at the Air/Water Interface
journal, July 2011

  • Bauer, Thomas; Zheng, Zhikun; Renn, Alois
  • Angewandte Chemie International Edition, Vol. 50, Issue 34
  • DOI: 10.1002/anie.201100669

High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity
journal, April 2015


Rapid, Low Temperature Formation of Imine-Linked Covalent Organic Frameworks Catalyzed by Metal Triflates
journal, March 2017

  • Matsumoto, Michio; Dasari, Raghunath R.; Ji, Woojung
  • Journal of the American Chemical Society, Vol. 139, Issue 14
  • DOI: 10.1021/jacs.7b01240

Synthetic Two-Dimensional Polymers
journal, July 2017


Covalent networks through on-surface chemistry in ultra-high vacuum: state-of-the-art and recent developments
journal, January 2011

  • Franc, Grégory; Gourdon, André
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 32
  • DOI: 10.1039/c1cp20700h

Data Processing for Atomic Resolution Electron Energy Loss Spectroscopy
journal, June 2012


Hyperspectral Imaging of Structure and Composition in Atomically Thin Heterostructures
journal, July 2013

  • Havener, Robin W.; Kim, Cheol-Joo; Brown, Lola
  • Nano Letters, Vol. 13, Issue 8
  • DOI: 10.1021/nl402062j

Surface nano-architecture of a metal–organic framework
journal, May 2010

  • Makiura, Rie; Motoyama, Soichiro; Umemura, Yasushi
  • Nature Materials, Vol. 9, Issue 7
  • DOI: 10.1038/nmat2769

Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness
journal, November 2016

  • Sahabudeen, Hafeesudeen; Qi, Haoyuan; Glatz, Bernhard Alexander
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13461

Van der Waals heterostructures
journal, July 2013

  • Geim, A. K.; Grigorieva, I. V.
  • Nature, Vol. 499, Issue 7459, p. 419-425
  • DOI: 10.1038/nature12385

Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures
journal, September 2017


Electric Field Effect in Atomically Thin Carbon Films
journal, October 2004


Interface-Assisted Synthesis of 2D Materials: Trend and Challenges
journal, June 2018


Measurement of the Optical Conductivity of Graphene
journal, November 2008


Towards Macroscopic Crystalline 2D Polymers
journal, September 2018

  • Feng, Xinliang; Schlüter, A. Dieter
  • Angewandte Chemie International Edition, Vol. 57, Issue 42
  • DOI: 10.1002/anie.201803456

Large-Area, Free-Standing, Two-Dimensional Supramolecular Polymer Single-Layer Sheets for Highly Efficient Electrocatalytic Hydrogen Evolution
journal, August 2015

  • Dong, Renhao; Pfeffermann, Martin; Liang, Haiwei
  • Angewandte Chemie International Edition, Vol. 54, Issue 41
  • DOI: 10.1002/anie.201506048

High Electrical Conductivity in Ni 3 (2,3,6,7,10,11-hexaiminotriphenylene) 2 , a Semiconducting Metal–Organic Graphene Analogue
journal, April 2014

  • Sheberla, Dennis; Sun, Lei; Blood-Forsythe, Martin A.
  • Journal of the American Chemical Society, Vol. 136, Issue 25
  • DOI: 10.1021/ja502765n

Two-dimensional atomic crystals
journal, July 2005

  • Novoselov, K. S.; Jiang, D.; Schedin, F.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 30, p. 10451-10453
  • DOI: 10.1073/pnas.0502848102

Lewis-Acid-Catalyzed Interfacial Polymerization of Covalent Organic Framework Films
journal, February 2018


CHEMISTRY: Extending Polymer Conjugation into the Second Dimension
journal, January 2009


On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films
journal, August 2013

  • Redel, Engelbert; Wang, Zhengbang; Walheim, Stefan
  • Applied Physics Letters, Vol. 103, Issue 9
  • DOI: 10.1063/1.4819836

Elements of Modern X-ray Physics
book, March 2011


2D materials and van der Waals heterostructures
journal, July 2016


Van der Waals integration before and beyond two-dimensional materials
journal, March 2019


Van der Waals heterostructures and devices
journal, July 2016


Experimental and theoretical investigations of the electronic band structure of metal-organic frameworks of HKUST-1 type
journal, November 2015

  • Gu, Zhi-Gang; Heinke, Lars; Wöll, Christof
  • Applied Physics Letters, Vol. 107, Issue 18
  • DOI: 10.1063/1.4934737

Self-Supporting Metal-Organic Layers as Single-Site Solid Catalysts
journal, March 2016

  • Cao, Lingyun; Lin, Zekai; Peng, Fei
  • Angewandte Chemie International Edition, Vol. 55, Issue 16
  • DOI: 10.1002/anie.201512054

Atomically Thin MoS2 A New Direct-Gap Semiconductor
journal, September 2010


Gwyddion: an open-source software for SPM data analysis
journal, January 2012


Synthesis and electronic structure of a two dimensional π-conjugated polythiophene
journal, January 2013

  • Cardenas, Luis; Gutzler, Rico; Lipton-Duffin, Josh
  • Chemical Science, Vol. 4, Issue 8
  • DOI: 10.1039/c3sc50800e

Highly Crystalline Nanofilm by Layering of Porphyrin Metal−Organic Framework Sheets
journal, April 2011

  • Motoyama, Soichiro; Makiura, Rie; Sakata, Osami
  • Journal of the American Chemical Society, Vol. 133, Issue 15
  • DOI: 10.1021/ja110720f

Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework
journal, December 2017


Two-dimensional polymers: concepts and perspectives
journal, January 2016

  • Payamyar, Payam; King, Benjamin T.; Öttinger, Hans Christian
  • Chemical Communications, Vol. 52, Issue 1
  • DOI: 10.1039/C5CC07381B

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions
journal, May 2018


Synthetic 2D Polymers: A Critical Perspective and a Look into the Future
journal, November 2018

  • Wang, Wei; Schlüter, A. Dieter
  • Macromolecular Rapid Communications, Vol. 40, Issue 1
  • DOI: 10.1002/marc.201800719

Rationally synthesized two-dimensional polymers
journal, May 2013

  • Colson, John W.; Dichtel, William R.
  • Nature Chemistry, Vol. 5, Issue 6
  • DOI: 10.1038/nchem.1628

Monolayer atomic crystal molecular superlattices
journal, March 2018

  • Wang, Chen; He, Qiyuan; Halim, Udayabagya
  • Nature, Vol. 555, Issue 7695
  • DOI: 10.1038/nature25774

Probing the electron states and metal-insulator transition mechanisms in molybdenum disulphide vertical heterostructures
journal, January 2015

  • Chen, Xiaolong; Wu, Zefei; Xu, Shuigang
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7088

Synthesis of Well-Ordered COF Monolayers: Surface Growth of Nanocrystalline Precursors versus Direct On-Surface Polycondensation
journal, November 2011

  • Dienstmaier, Jürgen F.; Gigler, Alexander M.; Goetz, Andreas J.
  • ACS Nano, Vol. 5, Issue 12
  • DOI: 10.1021/nn2032616