skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanistic Modeling of Microtopographic Impacts on CO2 and CH4 Fluxes in an Alaskan Tundra Ecosystem Using the CLM-Microbe Model

Abstract

Spatial heterogeneities in soil hydrology have been confirmed as a key control on CO2 and CH4 fluxes in the Arctic tundra ecosystem. In this study, we applied a mechanistic ecosystem model, CLM-Microbe, to examine the microtopographic impacts on CO2 and CH4 fluxes across seven landscape types in Utqiaġvik, Alaska: trough, low-centered polygon (LCP) center, LCP transition, LCP rim, high-centered polygon (HCP) center, HCP transition, and HCP rim. We first validated the CLM-Microbe model against static-chamber measured CO2 and CH4 fluxes in 2013 for three landscape types: trough, LCP center, and LCP rim. Model application showed that low-elevation and thus wetter landscape types (i.e., trough, transitions, and LCP center) had larger CH4 emissions rates with greater seasonal variations than high-elevation and drier landscape types (rims and HCP center). Sensitivity analysis indicated that substrate availability for methanogenesis (acetate, CO2 + H2) is the most important factor determining CH4 emission, and vegetation physiological properties largely affect the net ecosystem carbon exchange and ecosystem respiration in Arctic tundra ecosystems. Modeled CH4 emissions for different microtopographic features were upscaled to the eddy covariance (EC) domain with an area-weighted approach before validation against EC-measured CH4 fluxes. The model underestimated the EC-measured CH4 flux by 20% and 25% atmore » daily and hourly time steps, suggesting the importance of the time step in reporting CH4 flux. The strong microtopographic impacts on CO2 and CH4 fluxes call for a model-data integration framework for better understanding and predicting carbon flux in the highly heterogeneous Arctic landscape.« less

Authors:
 [1];  [2];  [3]; ORCiD logo [2];  [4]; ORCiD logo [5]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [1]
  1. Department of BiologySan Diego State University San Diego CA USA
  2. Environmental Sciences DivisionOak Ridge National Laboratory Oak Ridge TN USA
  3. Department of BiologySan Diego State University San Diego CA USA, Institute of Applied EcologyChinese Academy of Sciences Shenyang City China
  4. Civil and Environmental EngineeringUniversity of California, Berkeley Berkeley CA USA
  5. Earth Sciences DivisionLawrence Berkeley National Laboratory Berkeley CA USA
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); National Science Foundation (NSF)
OSTI Identifier:
1579403
Alternate Identifier(s):
OSTI ID: 1579405; OSTI ID: 1582360; OSTI ID: 1615822
Grant/Contract Number:  
AC05-00OR22725; AC02-05CH11231; 1702797
Resource Type:
Published Article
Journal Name:
Journal of Advances in Modeling Earth Systems
Additional Journal Information:
Journal Name: Journal of Advances in Modeling Earth Systems Journal Volume: 11 Journal Issue: 12; Journal ID: ISSN 1942-2466
Publisher:
American Geophysical Union (AGU)
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Arctic tundra; CH4 flux; microtopographic; sensitivity analysis; net carbon exchange

Citation Formats

Wang, Yihui, Yuan, Fengming, Yuan, Fenghui, Gu, Baohua, Hahn, Melanie S., Torn, Margaret S., Ricciuto, Daniel M., Kumar, Jitendra, He, Liyuan, Zona, Donatella, Lipson, David A., Wagner, Robert, Oechel, Walter C., Wullschleger, Stan D., Thornton, Peter E., and Xu, Xiaofeng. Mechanistic Modeling of Microtopographic Impacts on CO2 and CH4 Fluxes in an Alaskan Tundra Ecosystem Using the CLM-Microbe Model. United States: N. p., 2019. Web. https://doi.org/10.1029/2019MS001771.
Wang, Yihui, Yuan, Fengming, Yuan, Fenghui, Gu, Baohua, Hahn, Melanie S., Torn, Margaret S., Ricciuto, Daniel M., Kumar, Jitendra, He, Liyuan, Zona, Donatella, Lipson, David A., Wagner, Robert, Oechel, Walter C., Wullschleger, Stan D., Thornton, Peter E., & Xu, Xiaofeng. Mechanistic Modeling of Microtopographic Impacts on CO2 and CH4 Fluxes in an Alaskan Tundra Ecosystem Using the CLM-Microbe Model. United States. https://doi.org/10.1029/2019MS001771
Wang, Yihui, Yuan, Fengming, Yuan, Fenghui, Gu, Baohua, Hahn, Melanie S., Torn, Margaret S., Ricciuto, Daniel M., Kumar, Jitendra, He, Liyuan, Zona, Donatella, Lipson, David A., Wagner, Robert, Oechel, Walter C., Wullschleger, Stan D., Thornton, Peter E., and Xu, Xiaofeng. Thu . "Mechanistic Modeling of Microtopographic Impacts on CO2 and CH4 Fluxes in an Alaskan Tundra Ecosystem Using the CLM-Microbe Model". United States. https://doi.org/10.1029/2019MS001771.
@article{osti_1579403,
title = {Mechanistic Modeling of Microtopographic Impacts on CO2 and CH4 Fluxes in an Alaskan Tundra Ecosystem Using the CLM-Microbe Model},
author = {Wang, Yihui and Yuan, Fengming and Yuan, Fenghui and Gu, Baohua and Hahn, Melanie S. and Torn, Margaret S. and Ricciuto, Daniel M. and Kumar, Jitendra and He, Liyuan and Zona, Donatella and Lipson, David A. and Wagner, Robert and Oechel, Walter C. and Wullschleger, Stan D. and Thornton, Peter E. and Xu, Xiaofeng},
abstractNote = {Spatial heterogeneities in soil hydrology have been confirmed as a key control on CO2 and CH4 fluxes in the Arctic tundra ecosystem. In this study, we applied a mechanistic ecosystem model, CLM-Microbe, to examine the microtopographic impacts on CO2 and CH4 fluxes across seven landscape types in Utqiaġvik, Alaska: trough, low-centered polygon (LCP) center, LCP transition, LCP rim, high-centered polygon (HCP) center, HCP transition, and HCP rim. We first validated the CLM-Microbe model against static-chamber measured CO2 and CH4 fluxes in 2013 for three landscape types: trough, LCP center, and LCP rim. Model application showed that low-elevation and thus wetter landscape types (i.e., trough, transitions, and LCP center) had larger CH4 emissions rates with greater seasonal variations than high-elevation and drier landscape types (rims and HCP center). Sensitivity analysis indicated that substrate availability for methanogenesis (acetate, CO2 + H2) is the most important factor determining CH4 emission, and vegetation physiological properties largely affect the net ecosystem carbon exchange and ecosystem respiration in Arctic tundra ecosystems. Modeled CH4 emissions for different microtopographic features were upscaled to the eddy covariance (EC) domain with an area-weighted approach before validation against EC-measured CH4 fluxes. The model underestimated the EC-measured CH4 flux by 20% and 25% at daily and hourly time steps, suggesting the importance of the time step in reporting CH4 flux. The strong microtopographic impacts on CO2 and CH4 fluxes call for a model-data integration framework for better understanding and predicting carbon flux in the highly heterogeneous Arctic landscape.},
doi = {10.1029/2019MS001771},
journal = {Journal of Advances in Modeling Earth Systems},
number = 12,
volume = 11,
place = {United States},
year = {2019},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1029/2019MS001771

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Responses of CO 2 flux components of Alaskan Coastal Plain tundra to shifts in water table
journal, January 2010

  • Olivas, Paulo C.; Oberbauer, Steven F.; Tweedie, Craig E.
  • Journal of Geophysical Research, Vol. 115
  • DOI: 10.1029/2009JG001254

Microtopographic control on the ground thermal regime in ice wedge polygons
journal, January 2018

  • Abolt, Charles J.; Young, Michael H.; Atchley, Adam L.
  • The Cryosphere, Vol. 12, Issue 6
  • DOI: 10.5194/tc-12-1957-2018

Mapping Arctic Plant Functional Type Distributions in the Barrow Environmental Observatory Using WorldView-2 and LiDAR Datasets
journal, September 2016

  • Langford, Zachary; Kumar, Jitendra; Hoffman, Forrest
  • Remote Sensing, Vol. 8, Issue 9
  • DOI: 10.3390/rs8090733

Influence of carbon-nitrogen cycle coupling on land model response to CO 2 fertilization and climate variability : INFLUENCE OF CARBON-NITROGEN COUPLING
journal, December 2007

  • Thornton, Peter E.; Lamarque, Jean-François; Rosenbloom, Nan A.
  • Global Biogeochemical Cycles, Vol. 21, Issue 4
  • DOI: 10.1029/2006GB002868

Net regional methane sink in High Arctic soils of northeast Greenland
journal, December 2014

  • Juncher Jørgensen, Christian; Lund Johansen, Katrine Maria; Westergaard-Nielsen, Andreas
  • Nature Geoscience, Vol. 8, Issue 1
  • DOI: 10.1038/ngeo2305

Morphometric and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic Coastal Plain, Alaska
journal, January 2005

  • Hinkel, K. M.; Frohn, R. C.; Nelson, F. E.
  • Permafrost and Periglacial Processes, Vol. 16, Issue 4
  • DOI: 10.1002/ppp.532

Long-Term Drainage Reduces CO 2 Uptake and CH 4 Emissions in a Siberian Permafrost Ecosystem : Drainage impact on Arctic carbon cycle
journal, December 2017

  • Kittler, Fanny; Heimann, Martin; Kolle, Olaf
  • Global Biogeochemical Cycles, Vol. 31, Issue 12
  • DOI: 10.1002/2017GB005774

Tundra ecosystems observed to be CO 2 sources due to differential amplification of the carbon cycle
journal, August 2013

  • Belshe, E. F.; Schuur, E. A. G.; Bolker, B. M.
  • Ecology Letters, Vol. 16, Issue 10
  • DOI: 10.1111/ele.12164

Methane emission from Siberian arctic polygonal tundra: eddy covariance measurements and modeling
journal, June 2008


A scalable model for methane consumption in arctic mineral soils
journal, May 2016

  • Oh, Youmi; Stackhouse, Brandon; Lau, Maggie C. Y.
  • Geophysical Research Letters, Vol. 43, Issue 10
  • DOI: 10.1002/2016GL069049

Influences and interactions of inundation, peat, and snow on active layer thickness
journal, May 2016

  • Atchley, Adam L.; Coon, Ethan T.; Painter, Scott L.
  • Geophysical Research Letters, Vol. 43, Issue 10
  • DOI: 10.1002/2016GL068550

Comparison of chamber and eddy covariance-based CO2 and CH4 emission estimates in a heterogeneous grass ecosystem on peat
journal, June 2010


A satellite data driven biophysical modeling approach for estimating northern peatland and tundra CO 2 and CH 4 fluxes
journal, January 2014


Methane production as a function of anaerobic carbon mineralization: A process model
journal, August 1998


Process-based modelling of the methane balance in periglacial landscapes (JSBACH-methane)
journal, January 2017

  • Kaiser, Sonja; Göckede, Mathias; Castro-Morales, Karel
  • Geoscientific Model Development, Vol. 10, Issue 1
  • DOI: 10.5194/gmd-10-333-2017

Vegetation Type Dominates the Spatial Variability in CH4 Emissions Across Multiple Arctic Tundra Landscapes
journal, May 2016


Pathways of anaerobic organic matter decomposition in tundra soils from Barrow, Alaska: BIOGEOCHEMISTRY OF ANOXIC ARCTIC TUNDRA
journal, November 2015

  • Herndon, Elizabeth M.; Mann, Benjamin F.; Roy Chowdhury, Taniya
  • Journal of Geophysical Research: Biogeosciences, Vol. 120, Issue 11
  • DOI: 10.1002/2015JG003147

Modeling methane emissions from the Alaskan Yukon River basin, 1986-2005, by coupling a large-scale hydrological model and a process-based methane model: CH
journal, April 2012

  • Lu, Xiaoliang; Zhuang, Qianlai
  • Journal of Geophysical Research: Biogeosciences, Vol. 117, Issue G2
  • DOI: 10.1029/2011JG001843

Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground: Polygonal Ground Chemistry
journal, March 2015

  • Newman, B. D.; Throckmorton, H. M.; Graham, D. E.
  • Geophysical Research Letters, Vol. 42, Issue 6
  • DOI: 10.1002/2014GL062804

Variation in the plant-mediated methane transport and its importance for methane emission from intact wetland peat mesocosms
journal, January 2013

  • Bhullar, G. S.; Edwards, P. J.; Olde Venterink, H.
  • Journal of Plant Ecology, Vol. 6, Issue 4
  • DOI: 10.1093/jpe/rts045

Simulation of methanogenesis in the mathematical model ecosys
journal, July 1998


A microbial functional group-based module for simulating methane production and consumption: Application to an incubated permafrost soil: A MICROBIAL FUNCTIONAL GROUP-BASED METHANE MODULE
journal, July 2015

  • Xu, Xiaofeng; Elias, Dwayne A.; Graham, David E.
  • Journal of Geophysical Research: Biogeosciences, Vol. 120, Issue 7
  • DOI: 10.1002/2015JG002935

Microbial community structure and soil p H correspond to methane production in A rctic A laska soils
journal, July 2017

  • Wagner, Robert; Zona, Donatella; Oechel, Walter
  • Environmental Microbiology, Vol. 19, Issue 8
  • DOI: 10.1111/1462-2920.13854

Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods
journal, January 2017

  • Wainwright, Haruko M.; Liljedahl, Anna K.; Dafflon, Baptiste
  • The Cryosphere, Vol. 11, Issue 2
  • DOI: 10.5194/tc-11-857-2017

Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source
journal, February 1993

  • Oechel, Walter C.; Hastings, Steven J.; Vourlrtis, George
  • Nature, Vol. 361, Issue 6412
  • DOI: 10.1038/361520a0

Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source
journal, November 2014

  • Nauta, Ake L.; Heijmans, Monique M. P. D.; Blok, Daan
  • Nature Climate Change, Vol. 5, Issue 1
  • DOI: 10.1038/nclimate2446

Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra
journal, February 2015


Controls on soil methane fluxes: Tests of biophysical mechanisms using stable isotope tracers: BIOPHYSICAL CONTROL OF SOIL METHANE FLUX
journal, May 2007

  • von Fischer, Joseph C.; Hedin, Lars O.
  • Global Biogeochemical Cycles, Vol. 21, Issue 2
  • DOI: 10.1029/2006GB002687

Cold season emissions dominate the Arctic tundra methane budget
journal, December 2015

  • Zona, Donatella; Gioli, Beniamino; Commane, Róisín
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 1
  • DOI: 10.1073/pnas.1516017113

Landscape topography structures the soil microbiome in arctic polygonal tundra
journal, February 2018


Modeling the spatiotemporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape
journal, January 2016


Geochemical drivers of organic matter decomposition in arctic tundra soils
journal, December 2015


Water-table height and microtopography control biogeochemical cycling in an Arctic coastal tundra ecosystem
journal, January 2012


Attribution of spatial and temporal variations in terrestrial methane flux over North America
journal, January 2010


Pathways and transformations of dissolved methane and dissolved inorganic carbon in Arctic tundra watersheds: Evidence from analysis of stable isotopes: DISSOLVED CH
journal, November 2015

  • Throckmorton, Heather M.; Heikoop, Jeffrey M.; Newman, Brent D.
  • Global Biogeochemical Cycles, Vol. 29, Issue 11
  • DOI: 10.1002/2014GB005044

Ecosystem model spin-up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model
journal, November 2005


Methanogenic archaea: ecologically relevant differences in energy conservation
journal, June 2008

  • Thauer, Rudolf K.; Kaster, Anne-Kristin; Seedorf, Henning
  • Nature Reviews Microbiology, Vol. 6, Issue 8
  • DOI: 10.1038/nrmicro1931

Thaw processes in ice-rich permafrost landscapes represented with laterally coupled tiles in a land surface model
journal, January 2019


Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales
journal, February 2013

  • Bridgham, Scott D.; Cadillo-Quiroz, Hinsby; Keller, Jason K.
  • Global Change Biology, Vol. 19, Issue 5
  • DOI: 10.1111/gcb.12131

Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1
journal, January 2010

  • Wania, R.; Ross, I.; Prentice, I. C.
  • Geoscientific Model Development, Vol. 3, Issue 2
  • DOI: 10.5194/gmd-3-565-2010

A CH 4 emission estimate for the Kuparuk River basin, Alaska
journal, November 1998

  • Reeburgh, W. S.; King, J. Y.; Regli, S. K.
  • Journal of Geophysical Research: Atmospheres, Vol. 103, Issue D22
  • DOI: 10.1029/98JD00993

Large methane emission upon spring thaw from natural wetlands in the northern permafrost region
journal, July 2012


Episodic release of methane bubbles from peatland during spring thaw
journal, December 2007


The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4
journal, January 2013


Nonlinear controls on evapotranspiration in arctic coastal wetlands
journal, January 2011


Upscaling methane fluxes from closed chambers to eddy covariance based on a permafrost biogeochemistry integrated model
journal, December 2011


Biochemistry of Acetate Catabolism in Anaerobic Chemotrophic Bacteria
journal, October 1989


Microtopographic controls on ecosystem functioning in the Arctic Coastal Plain
journal, January 2011

  • Zona, D.; Lipson, D. A.; Zulueta, R. C.
  • Journal of Geophysical Research, Vol. 116
  • DOI: 10.1029/2009JG001241

Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems
journal, January 2016


Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions: Methane, microbes and models
journal, May 2013

  • Nazaries, Loïc; Murrell, J. Colin; Millard, Pete
  • Environmental Microbiology, Vol. 15, Issue 9
  • DOI: 10.1111/1462-2920.12149