skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Continuous-wave upconverting nanoparticle microlasers

Abstract

Reducing the size of lasers to microscale dimensions enables new technologies that are specifically tailored for operation in confined spaces ranging from ultra-high-speed microprocessors to live brain tissue. However, reduced cavity sizes increase optical losses and require greater input powers to reach lasing thresholds. Multiphoton-pumped lasers that have been miniaturized using nanomaterials such as lanthanide-doped upconverting nanoparticles (UCNPs) as lasing media require high pump intensities to achieve ultraviolet and visible emission and therefore operate under pulsed excitation schemes. Here, we make use of the recently described energy-looping excitation mechanism in Tm 3+-doped UCNPs to achieve continuous-wave upconverted lasing action in stand-alone microcavities at excitation fluences as low as 14 kW cm -2. Continuous-wave lasing is uninterrupted, maximizing signal and enabling modulation of optical interactions. By coupling energy-looping nanoparticles to whispering-gallery modes of polystyrene microspheres, we induce stable lasing for more than 5 h at blue and near-infrared wavelengths simultaneously. These microcavities are excited in the biologically transmissive second near-infrared (NIR-II) window and are small enough to be embedded in organisms, tissues or devices. The ability to produce continuous-wave lasing in microcavities immersed in blood serum highlights practical applications of these microscale lasers for sensing and illumination in complex biological environments.

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [1];  [1];  [1];  [1];  [1];  [3];  [1];  [1]; ORCiD logo [4];  [5]; ORCiD logo [1];  [1];  [6]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
  3. Politecnico di Milano (Italy)
  4. National Lab. Astana (Kazakhstan)
  5. Politecnico di Milano (Italy); Ist. Italiano di Tecnologia, Milan (Italy)
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Columbia Univ., New York, NY (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1579331
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nature Nanotechnology
Additional Journal Information:
Journal Volume: 13; Journal Issue: 7; Journal ID: ISSN 1748-3387
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION

Citation Formats

Fernandez-Bravo, Angel, Yao, Kaiyuan, Barnard, Edward S., Borys, Nicholas J., Levy, Elizabeth S., Tian, Bining, Tajon, Cheryl A., Moretti, Luca, Altoe, M. Virginia, Aloni, Shaul, Beketayev, Kenes, Scotognella, Francesco, Cohen, Bruce E., Chan, Emory M., and Schuck, P. James. Continuous-wave upconverting nanoparticle microlasers. United States: N. p., 2018. Web. doi:10.1038/s41565-018-0161-8.
Fernandez-Bravo, Angel, Yao, Kaiyuan, Barnard, Edward S., Borys, Nicholas J., Levy, Elizabeth S., Tian, Bining, Tajon, Cheryl A., Moretti, Luca, Altoe, M. Virginia, Aloni, Shaul, Beketayev, Kenes, Scotognella, Francesco, Cohen, Bruce E., Chan, Emory M., & Schuck, P. James. Continuous-wave upconverting nanoparticle microlasers. United States. doi:10.1038/s41565-018-0161-8.
Fernandez-Bravo, Angel, Yao, Kaiyuan, Barnard, Edward S., Borys, Nicholas J., Levy, Elizabeth S., Tian, Bining, Tajon, Cheryl A., Moretti, Luca, Altoe, M. Virginia, Aloni, Shaul, Beketayev, Kenes, Scotognella, Francesco, Cohen, Bruce E., Chan, Emory M., and Schuck, P. James. Mon . "Continuous-wave upconverting nanoparticle microlasers". United States. doi:10.1038/s41565-018-0161-8. https://www.osti.gov/servlets/purl/1579331.
@article{osti_1579331,
title = {Continuous-wave upconverting nanoparticle microlasers},
author = {Fernandez-Bravo, Angel and Yao, Kaiyuan and Barnard, Edward S. and Borys, Nicholas J. and Levy, Elizabeth S. and Tian, Bining and Tajon, Cheryl A. and Moretti, Luca and Altoe, M. Virginia and Aloni, Shaul and Beketayev, Kenes and Scotognella, Francesco and Cohen, Bruce E. and Chan, Emory M. and Schuck, P. James},
abstractNote = {Reducing the size of lasers to microscale dimensions enables new technologies that are specifically tailored for operation in confined spaces ranging from ultra-high-speed microprocessors to live brain tissue. However, reduced cavity sizes increase optical losses and require greater input powers to reach lasing thresholds. Multiphoton-pumped lasers that have been miniaturized using nanomaterials such as lanthanide-doped upconverting nanoparticles (UCNPs) as lasing media require high pump intensities to achieve ultraviolet and visible emission and therefore operate under pulsed excitation schemes. Here, we make use of the recently described energy-looping excitation mechanism in Tm3+-doped UCNPs to achieve continuous-wave upconverted lasing action in stand-alone microcavities at excitation fluences as low as 14 kW cm-2. Continuous-wave lasing is uninterrupted, maximizing signal and enabling modulation of optical interactions. By coupling energy-looping nanoparticles to whispering-gallery modes of polystyrene microspheres, we induce stable lasing for more than 5 h at blue and near-infrared wavelengths simultaneously. These microcavities are excited in the biologically transmissive second near-infrared (NIR-II) window and are small enough to be embedded in organisms, tissues or devices. The ability to produce continuous-wave lasing in microcavities immersed in blood serum highlights practical applications of these microscale lasers for sensing and illumination in complex biological environments.},
doi = {10.1038/s41565-018-0161-8},
journal = {Nature Nanotechnology},
number = 7,
volume = 13,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 25 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Advances in small lasers
journal, November 2014


New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics
journal, July 2013

  • Moss, David J.; Morandotti, Roberto; Gaeta, Alexander L.
  • Nature Photonics, Vol. 7, Issue 8
  • DOI: 10.1038/nphoton.2013.183

Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics
journal, April 2013


Enhancing Multiphoton Upconversion from NaYF 4 :Yb/Tm@NaYF 4 Core–Shell Nanoparticles via the Use of Laser Cavity
journal, January 2017


Amplified Spontaneous Emission and Lasing from Lanthanide-Doped Up-Conversion Nanocrystals
journal, November 2013

  • Zhu, Hai; Chen, Xian; Jin, Li Min
  • ACS Nano, Vol. 7, Issue 12
  • DOI: 10.1021/nn405387t

Ultralow-threshold multiphoton-pumped lasing from colloidal nanoplatelets in solution
journal, September 2015

  • Li, Mingjie; Zhi, Min; Zhu, Hai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9513

Controlling upconversion nanocrystals for emerging applications
journal, November 2015


Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging
journal, September 2016


Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells
journal, October 2014

  • Grim, Joel Q.; Christodoulou, Sotirios; Di Stasio, Francesco
  • Nature Nanotechnology, Vol. 9, Issue 11
  • DOI: 10.1038/nnano.2014.213

Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals
journal, June 2009

  • Wu, S.; Han, G.; Milliron, D. J.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 27, p. 10917-10921
  • DOI: 10.1073/pnas.0904792106

Possibility of Luminescent Quantum Yields Greater than Unity
journal, November 1957


Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging
journal, March 2014

  • Gargas, Daniel J.; Chan, Emory M.; Ostrowski, Alexis D.
  • Nature Nanotechnology, Vol. 9, Issue 4
  • DOI: 10.1038/nnano.2014.29

Infrared‐Pumped Visible Laser
journal, July 1971

  • Johnson, L. F.; Guggenheim, H. J.
  • Applied Physics Letters, Vol. 19, Issue 2
  • DOI: 10.1063/1.1653816

CW room-temperature blue upconversion fibre laser
journal, January 1992

  • Grubb, S. G.; Bennett, K. W.; Cannon, R. S.
  • Electronics Letters, Vol. 28, Issue 13
  • DOI: 10.1049/el:19920785

Room-temperature upconversion fiber laser tunable in the red, orange, green, and blue spectral regions
journal, January 1995


Taking advantage of luminescent lanthanide ions
journal, January 2005

  • Bünzli, Jean-Claude G.; Piguet, Claude
  • Chemical Society Reviews, Vol. 34, Issue 12
  • DOI: 10.1039/b406082m

Upconversion lasing of a thulium-ion-doped fluorozirconate glass microsphere
journal, September 1999

  • Fujiwara, Hideki; Sasaki, Keiji
  • Journal of Applied Physics, Vol. 86, Issue 5
  • DOI: 10.1063/1.371064

DFB laser action in a flexible fully plastic multilayer
journal, January 2010

  • Scotognella, Francesco; Monguzzi, Angelo; Meinardi, Francesco
  • Phys. Chem. Chem. Phys., Vol. 12, Issue 2
  • DOI: 10.1039/B917630F

Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics
journal, March 2014

  • Chen, Guanying; Qiu, Hailong; Prasad, Paras N.
  • Chemical Reviews, Vol. 114, Issue 10
  • DOI: 10.1021/cr400425h

In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers
journal, September 2012

  • Idris, Niagara Muhammad; Gnanasammandhan, Muthu Kumara; Zhang, Jing
  • Nature Medicine, Vol. 18, Issue 10
  • DOI: 10.1038/nm.2933

Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications
journal, December 2015


3-Dimensional photonic crystal surface enhanced upconversion emission for improved near-infrared photoresponse
journal, January 2014


Dome-shaped whispering gallery mode laser for remote wall temperature sensing
journal, January 2014


Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy
journal, March 2017

  • Fan, Fengjia; Voznyy, Oleksandr; Sabatini, Randy P.
  • Nature, Vol. 544, Issue 7648
  • DOI: 10.1038/nature21424

Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides
journal, January 2009

  • Yang, Allen H. J.; Moore, Sean D.; Schmidt, Bradley S.
  • Nature, Vol. 457, Issue 7225
  • DOI: 10.1038/nature07593

Green, holmium-doped upconversion fibre laser pumped by red semiconductor laser
journal, January 1997

  • Funk, D. S.; Eden, J. G.; Osinski, J. S.
  • Electronics Letters, Vol. 33, Issue 23
  • DOI: 10.1049/el:19971315

Laser diode pumped 106 mW blue upconversion fiber laser
journal, September 1995

  • Sanders, S.; Waarts, R. G.; Mehuys, D. G.
  • Applied Physics Letters, Vol. 67, Issue 13
  • DOI: 10.1063/1.115412

High power upconversion lasing at 810 nm, in Tm:ZBLAN fibre
journal, January 1994

  • Aggarwal, I.; Dennis, M. L.; Dixon, J. W.
  • Electronics Letters, Vol. 30, Issue 2
  • DOI: 10.1049/el:19940077

Ultralow-Threshold Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Seeded CdSe/CdS Nanorod Heterostructures
journal, November 2012

  • Xing, Guichuan; Liao, Yile; Wu, Xiangyang
  • ACS Nano, Vol. 6, Issue 12
  • DOI: 10.1021/nn304200a

Two-photon-pumped cavity lasing in a dye-solution-filled hollow-fiber system
journal, January 1995

  • He, Guang S.; Bhawalkar, Jayant D.; Zhao, Chan F.
  • Optics Letters, Vol. 20, Issue 23
  • DOI: 10.1364/OL.20.002393

Exceptionally Strong Multiphoton-Excited Blue Photoluminescence and Lasing from Ladder-Type Oligo( p -phenylene)s
journal, April 2012

  • Fan, Hai Hua; Guo, Lei; Li, King Fai
  • Journal of the American Chemical Society, Vol. 134, Issue 17
  • DOI: 10.1021/ja302085q

    Works referencing / citing this record:

    Thermally enhanced NIR–NIR anti-Stokes emission in rare earth doped nanocrystals
    journal, January 2019