skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability

Abstract

Low bandgap tin-lead iodide perovskites are key components of all-perovskite tandem solar cells, but can be unstable because tin is prone to oxidation. Here, to avoid a reaction with the most popular hole contact, we eliminated polyethylenedioxythiophene:polystyrenesulfonate as a hole transport layer and instead used an upward band offset at an indium tin oxide-perovskite heterojunction to extract holes. To suppress oxidative degradation, we improved the morphology to create a compact and large-grained film. The tin content was kept at or below 50% and the device capped with a sputtered indium zinc oxide electrode. These advances resulted in a substantially improved thermal and environmental stability in a low bandgap perovskite solar cell without compromising the efficiency. The solar cells retained 95% of their initial efficiency after 1,000 h at 85 degrees C in air in the dark with no encapsulation and in a damp heat test (85 degrees C with 85% relative humidity) with encapsulation. Finally, the full initial efficiency was maintained under operation near the maximum power point and near 1 sun illumination for over 1,000 h.

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [4]; ORCiD logo [1];  [4];  [3]; ORCiD logo [5];  [4];  [5]; ORCiD logo [1]; ORCiD logo [5];  [4]; ORCiD logo [5]; ORCiD logo [5]; ORCiD logo [3]
  1. Stanford Univ., CA (United States); National Renewable Energy Lab. (NREL), Golden, CO (United States)
  2. Stanford Univ., CA (United States); National Renewable Energy Lab. (NREL), Golden, CO (United States); Swift Solar, Golden, CO (United States)
  3. National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Colorado, Boulder, CO (United States)
  4. Stanford Univ., CA (United States)
  5. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Colorado, Boulder, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office; US Department of the Navy, Office of Naval Research (ONR)
OSTI Identifier:
1578261
Alternate Identifier(s):
OSTI ID: 1682249; OSTI ID: 1682252
Report Number(s):
NREL/JA-5900-75597
Journal ID: ISSN 2058-7546
Grant/Contract Number:  
AC36-08GO28308; N00014-17-1-2212; EE0008551; ECCS-1542152
Resource Type:
Accepted Manuscript
Journal Name:
Nature Energy
Additional Journal Information:
Journal Volume: 4; Journal Issue: 11; Journal ID: ISSN 2058-7546
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; perovskite solar cells; low bandgap; hole transport layers; low bandgap tin–lead halide perovskite; stability; tin–lead iodide; perovskites

Citation Formats

Prasanna, Rohit, Leijtens, Tomas, Dunfield, Sean P., Raiford, James A., Wolf, Eli J., Swifter, Simon A., Werner, Jérémie, Eperon, Giles E., de Paula, Camila, Palmstrom, Axel F., Boyd, Caleb C., van Hest, Maikel F. A. M., Bent, Stacey F., Teeter, Glenn, Berry, Joseph J., and McGehee, Michael D. Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability. United States: N. p., 2019. Web. doi:10.1038/s41560-019-0471-6.
Prasanna, Rohit, Leijtens, Tomas, Dunfield, Sean P., Raiford, James A., Wolf, Eli J., Swifter, Simon A., Werner, Jérémie, Eperon, Giles E., de Paula, Camila, Palmstrom, Axel F., Boyd, Caleb C., van Hest, Maikel F. A. M., Bent, Stacey F., Teeter, Glenn, Berry, Joseph J., & McGehee, Michael D. Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability. United States. doi:https://doi.org/10.1038/s41560-019-0471-6
Prasanna, Rohit, Leijtens, Tomas, Dunfield, Sean P., Raiford, James A., Wolf, Eli J., Swifter, Simon A., Werner, Jérémie, Eperon, Giles E., de Paula, Camila, Palmstrom, Axel F., Boyd, Caleb C., van Hest, Maikel F. A. M., Bent, Stacey F., Teeter, Glenn, Berry, Joseph J., and McGehee, Michael D. Mon . "Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability". United States. doi:https://doi.org/10.1038/s41560-019-0471-6. https://www.osti.gov/servlets/purl/1578261.
@article{osti_1578261,
title = {Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability},
author = {Prasanna, Rohit and Leijtens, Tomas and Dunfield, Sean P. and Raiford, James A. and Wolf, Eli J. and Swifter, Simon A. and Werner, Jérémie and Eperon, Giles E. and de Paula, Camila and Palmstrom, Axel F. and Boyd, Caleb C. and van Hest, Maikel F. A. M. and Bent, Stacey F. and Teeter, Glenn and Berry, Joseph J. and McGehee, Michael D.},
abstractNote = {Low bandgap tin-lead iodide perovskites are key components of all-perovskite tandem solar cells, but can be unstable because tin is prone to oxidation. Here, to avoid a reaction with the most popular hole contact, we eliminated polyethylenedioxythiophene:polystyrenesulfonate as a hole transport layer and instead used an upward band offset at an indium tin oxide-perovskite heterojunction to extract holes. To suppress oxidative degradation, we improved the morphology to create a compact and large-grained film. The tin content was kept at or below 50% and the device capped with a sputtered indium zinc oxide electrode. These advances resulted in a substantially improved thermal and environmental stability in a low bandgap perovskite solar cell without compromising the efficiency. The solar cells retained 95% of their initial efficiency after 1,000 h at 85 degrees C in air in the dark with no encapsulation and in a damp heat test (85 degrees C with 85% relative humidity) with encapsulation. Finally, the full initial efficiency was maintained under operation near the maximum power point and near 1 sun illumination for over 1,000 h.},
doi = {10.1038/s41560-019-0471-6},
journal = {Nature Energy},
number = 11,
volume = 4,
place = {United States},
year = {2019},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 25 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Stable Sn/Pb-Based Perovskite Solar Cells with a Coherent 2D/3D Interface
journal, November 2018


Mixed-Halide Perovskites with Stabilized Bandgaps
journal, October 2017


Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells
journal, May 2016

  • Domanski, Konrad; Correa-Baena, Juan-Pablo; Mine, Nicolas
  • ACS Nano, Vol. 10, Issue 6
  • DOI: 10.1021/acsnano.6b02613

Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability
journal, January 2018


Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors
journal, July 2018


One-Year stable perovskite solar cells by 2D/3D interface engineering
journal, June 2017

  • Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15684

Robust Stability of Efficient Lead-Free Formamidinium Tin Iodide Perovskite Solar Cells Realized by Structural Regulation
journal, November 2018


Composition and Interface Engineering for Efficient and Thermally Stable Pb-Sn Mixed Low-Bandgap Perovskite Solar Cells
journal, October 2018

  • Chi, Dan; Huang, Shihua; Zhang, Meiying
  • Advanced Functional Materials, Vol. 28, Issue 51
  • DOI: 10.1002/adfm.201804603

23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability
journal, February 2017

  • Bush, Kevin A.; Palmstrom, Axel F.; Yu, Zhengshan J.
  • Nature Energy, Vol. 2, Issue 4
  • DOI: 10.1038/nenergy.2017.9

Metal halide perovskite tandem and multiple-junction photovoltaics
journal, November 2017

  • Eperon, Giles E.; Hörantner, Maximilian T.; Snaith, Henry J.
  • Nature Reviews Chemistry, Vol. 1, Issue 12
  • DOI: 10.1038/s41570-017-0095

A full overview of international standards assessing the long-term stability of perovskite solar cells
journal, January 2018

  • Holzhey, Philippe; Saliba, Michael
  • Journal of Materials Chemistry A, Vol. 6, Issue 44
  • DOI: 10.1039/C8TA06950F

Precise Determination of the Valence-Band Edge in X-Ray Photoemission Spectra: Application to Measurement of Semiconductor Interface Potentials
journal, June 1980


Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells
journal, March 2017


Subgrain Special Boundaries in Halide Perovskite Thin Films Restrict Carrier Diffusion
journal, October 2018


The Potential of Multijunction Perovskite Solar Cells
journal, October 2017


Defect Passivation via a Graded Fullerene Heterojunction in Low-Bandgap Pb–Sn Binary Perovskite Photovoltaics
journal, October 2017


Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition
journal, March 2018


The Effects of Doping Density and Temperature on the Optoelectronic Properties of Formamidinium Tin Triiodide Thin Films
journal, September 2018

  • Milot, Rebecca L.; Klug, Matthew T.; Davies, Christopher L.
  • Advanced Materials, Vol. 30, Issue 44
  • DOI: 10.1002/adma.201804506

Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites
journal, August 2017


Thermal Stability of Mixed Cation Metal Halide Perovskites in Air
journal, January 2018

  • Tan, Wanliang; Bowring, Andrea R.; Meng, Andrew C.
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 6
  • DOI: 10.1021/acsami.7b15263

Tin–lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells
journal, January 2018

  • Leijtens, Tomas; Prasanna, Rohit; Bush, Kevin A.
  • Sustainable Energy & Fuels, Vol. 2, Issue 11
  • DOI: 10.1039/C8SE00314A

Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics
journal, November 2018


Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture
journal, October 2018

  • Turren-Cruz, Silver-Hamill; Hagfeldt, Anders; Saliba, Michael
  • Science, Vol. 362, Issue 6413
  • DOI: 10.1126/science.aat3583

Enabling Flexible All-Perovskite Tandem Solar Cells
journal, September 2019


Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity
journal, January 2011

  • Takahashi, Yukari; Obara, Rena; Lin, Zheng-Zhong
  • Dalton Transactions, Vol. 40, Issue 20, p. 5563-5568
  • DOI: 10.1039/c0dt01601b

Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance
journal, May 2017

  • Liao, Yuqin; Liu, Hefei; Zhou, Wenjia
  • Journal of the American Chemical Society, Vol. 139, Issue 19
  • DOI: 10.1021/jacs.7b01815

Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics
journal, August 2017

  • Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas
  • Journal of the American Chemical Society, Vol. 139, Issue 32
  • DOI: 10.1021/jacs.7b04981

A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells
journal, November 2017


Surfactant-assisted growth of CdS thin films for photovoltaic applications
journal, May 2006

  • Perkins, Craig L.; Hasoon, Falah S.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 24, Issue 3
  • DOI: 10.1116/1.2194929

Encapsulating perovskite solar cells to withstand damp heat and thermal cycling
journal, January 2018

  • Cheacharoen, Rongrong; Boyd, Caleb C.; Burkhard, George F.
  • Sustainable Energy & Fuels, Vol. 2, Issue 11
  • DOI: 10.1039/C8SE00250A

A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
journal, January 2016


Mechanism of Tin Oxidation and Stabilization by Lead Substitution in Tin Halide Perovskites
journal, August 2017


Perovskite-perovskite tandem photovoltaics with optimized band gaps
journal, October 2016


Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics
journal, November 2016


Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers
journal, November 2018


Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells
journal, May 2014

  • Hao, Feng; Stoumpos, Constantinos C.; Chang, Robert P. H.
  • Journal of the American Chemical Society, Vol. 136, Issue 22
  • DOI: 10.1021/ja5033259

Lead-free organic–inorganic tin halide perovskites for photovoltaic applications
journal, January 2014

  • Noel, Nakita K.; Stranks, Samuel D.; Abate, Antonio
  • Energy Environ. Sci., Vol. 7, Issue 9
  • DOI: 10.1039/C4EE01076K

Barrier Design to Prevent Metal-Induced Degradation and Improve Thermal Stability in Perovskite Solar Cells
journal, June 2018


    Works referencing / citing this record:

    Combining Efficiency and Stability in Mixed Tin–Lead Perovskite Solar Cells by Capping Grains with an Ultrathin 2D Layer
    journal, March 2020


    Stabilization of Inorganic CsPb 0.5 Sn 0.5 I 2 Br Perovskite Compounds by Antioxidant Tea Polyphenol
    journal, December 2019