DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Excess thermal energy and latent heat in nanocluster collisional growth

Abstract

Nanoclusters can form and grow by nanocluster-monomer collisions (condensation) and nanocluster-nanocluster collisions (coagulation). During growth, product nanoclusters have elevated thermal energies due to potential and thermal energy exchange following a collision. Even though nanocluster collisional heating may be significant and strongly size dependent, no prior theory describes this phenomenon for collisions of finite-size clusters. We derive a model to describe the excess thermal energy of collisional growth, defined as the kinetic energy increase in the product cluster, and latent heat of collisional growth, defined as the heat released to the background upon thermalization of the nonequilibrium cluster. Both quantities are composed of a temperature-independent term related to potential energy minimum differences and a size- and temperature-dependent term, which hinges upon heat capacity and energy partitioning. Example calculations using gold nanoclusters demonstrate that collisional heating can be important and strongly size dependent, particularly for reactive collisions involving nanoclusters composed of 14–20 atoms. Excessive latent heat release may have considerable implications in cluster formation and growth.

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Univ. of Minnesota, Minneapolis, MN (United States)
  2. European Commission, Ispra (Italy). Joint Research Centre
Publication Date:
Research Org.:
Univ. of Minnesota, Minneapolis, MN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1820660
Alternate Identifier(s):
OSTI ID: 1577918
Grant/Contract Number:  
SC0018202
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 151; Journal Issue: 22; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS

Citation Formats

Yang, Huan, Drossinos, Yannis, and Hogan, Christopher J. Excess thermal energy and latent heat in nanocluster collisional growth. United States: N. p., 2019. Web. doi:10.1063/1.5129918.
Yang, Huan, Drossinos, Yannis, & Hogan, Christopher J. Excess thermal energy and latent heat in nanocluster collisional growth. United States. https://doi.org/10.1063/1.5129918
Yang, Huan, Drossinos, Yannis, and Hogan, Christopher J. Tue . "Excess thermal energy and latent heat in nanocluster collisional growth". United States. https://doi.org/10.1063/1.5129918. https://www.osti.gov/servlets/purl/1820660.
@article{osti_1820660,
title = {Excess thermal energy and latent heat in nanocluster collisional growth},
author = {Yang, Huan and Drossinos, Yannis and Hogan, Christopher J.},
abstractNote = {Nanoclusters can form and grow by nanocluster-monomer collisions (condensation) and nanocluster-nanocluster collisions (coagulation). During growth, product nanoclusters have elevated thermal energies due to potential and thermal energy exchange following a collision. Even though nanocluster collisional heating may be significant and strongly size dependent, no prior theory describes this phenomenon for collisions of finite-size clusters. We derive a model to describe the excess thermal energy of collisional growth, defined as the kinetic energy increase in the product cluster, and latent heat of collisional growth, defined as the heat released to the background upon thermalization of the nonequilibrium cluster. Both quantities are composed of a temperature-independent term related to potential energy minimum differences and a size- and temperature-dependent term, which hinges upon heat capacity and energy partitioning. Example calculations using gold nanoclusters demonstrate that collisional heating can be important and strongly size dependent, particularly for reactive collisions involving nanoclusters composed of 14–20 atoms. Excessive latent heat release may have considerable implications in cluster formation and growth.},
doi = {10.1063/1.5129918},
journal = {Journal of Chemical Physics},
number = 22,
volume = 151,
place = {United States},
year = {Tue Dec 10 00:00:00 EST 2019},
month = {Tue Dec 10 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Melting in large sodium clusters: An orbital-free molecular dynamics study
preprint, January 1999


Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer
journal, October 2012

  • Chen, M.; Titcombe, M.; Jiang, J.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 46
  • DOI: 10.1073/pnas.1210285109

Caloric Curve across the Liquid-to-Gas Change for Sodium Clusters
journal, October 2001


Probing the Liquid-to-Gas Phase Transition in a Cluster via a Caloric Curve
journal, October 2001


XVI. On a mechanical theorem applicable to heat
journal, August 1870

  • Clausius, R.
  • The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 40, Issue 265
  • DOI: 10.1080/14786447008640370

Melting of size-selected aluminum nanoclusters with 84–128 atoms
journal, January 2010

  • Starace, Anne K.; Cao, Baopeng; Judd, Oscar H.
  • The Journal of Chemical Physics, Vol. 132, Issue 3
  • DOI: 10.1063/1.3285836

Reconsiderations of Nucleation Theory
journal, April 1962

  • Lothe, Jens; Pound, G. M.
  • The Journal of Chemical Physics, Vol. 36, Issue 8
  • DOI: 10.1063/1.1732832

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Gallium Cluster “Magic Melters”
journal, July 2004

  • Breaux, Gary A.; Hillman, Damon A.; Neal, Colleen M.
  • Journal of the American Chemical Society, Vol. 126, Issue 28
  • DOI: 10.1021/ja0477423

Magic numbers for metallic clusters and the principle of maximum hardness.
text, January 1992

  • K., Harbola, M.
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/btbr-vr43

Nucleation: Measurements, Theory, and Atmospheric Applications
journal, October 1995


Experimental Determination of the Melting Point and Heat Capacity for a Free Cluster of 139 Sodium Atoms
journal, July 1997

  • Schmidt, Martin; Kusche, Robert; Kronmüller, Werner
  • Physical Review Letters, Vol. 79, Issue 1
  • DOI: 10.1103/physrevlett.79.99

The magic numbers of metal and metal alloy clusters
journal, September 1992

  • Yamada, Y.; Castleman, A. W.
  • The Journal of Chemical Physics, Vol. 97, Issue 6
  • DOI: 10.1063/1.463898

Kinetische Behandlung der Keimbildung in übersättigten Dämpfen
journal, January 1935


Extraction of monomer-cluster association rate constants from water nucleation data measured at extreme supersaturations
journal, September 2019

  • Li, Chenxi; Lippe, Martina; Krohn, Jan
  • The Journal of Chemical Physics, Vol. 151, Issue 9
  • DOI: 10.1063/1.5118350

On the effect of pressure and carrier gas on homogeneous water nucleation
journal, April 2015

  • Fransen, M. A. L. J.; Hrubý, J.; Smeulders, D. M. J.
  • The Journal of Chemical Physics, Vol. 142, Issue 16
  • DOI: 10.1063/1.4919249

Correlation between the latent heats and cohesive energies of metal clusters
journal, October 2008

  • Starace, Anne K.; Neal, Colleen M.; Cao, Baopeng
  • The Journal of Chemical Physics, Vol. 129, Issue 14
  • DOI: 10.1063/1.2987720

Nonisothermal homogeneous nucleation
journal, August 1992

  • Wyslouzil, B. E.; Seinfeld, J. H.
  • The Journal of Chemical Physics, Vol. 97, Issue 4
  • DOI: 10.1063/1.463055

Homogeneous nucleation rate measurements of 1-propanol in helium: The effect of carrier gas pressure
journal, April 2006

  • Brus, David; Ždímal, Vladimír; Stratmann, Frank
  • The Journal of Chemical Physics, Vol. 124, Issue 16
  • DOI: 10.1063/1.2185634

Finite-size effects in simulations of nucleation
journal, December 2006

  • Wedekind, Jan; Reguera, David; Strey, Reinhard
  • The Journal of Chemical Physics, Vol. 125, Issue 21
  • DOI: 10.1063/1.2402167

Atmospheric Cluster Dynamics Code: a flexible method for solution of the birth-death equations
journal, January 2012

  • McGrath, M. J.; Olenius, T.; Ortega, I. K.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 5
  • DOI: 10.5194/acp-12-2345-2012

Free Energies of Formation of Metal Clusters and Nanoparticles from Molecular Simulations:  Al n with n = 2−60
journal, November 2007

  • Li, Zhen Hua; Bhatt, Divesh; Schultz, Nathan E.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 44
  • DOI: 10.1021/jp073559v

Melting and Freezing of Metal Clusters
journal, May 2011


Ion-induced nucleation of pure biogenic particles
text, January 2016


Melting, freezing, and coalescence of gold nanoclusters
journal, July 1997

  • Lewis, Laurent J.; Jensen, Pablo; Barrat, Jean-Louis
  • Physical Review B, Vol. 56, Issue 4
  • DOI: 10.1103/physrevb.56.2248

Homogeneous nucleation with magic numbers: Aluminum
journal, October 2009

  • Girshick, Steven L.; Agarwal, Pulkit; Truhlar, Donald G.
  • The Journal of Chemical Physics, Vol. 131, Issue 13
  • DOI: 10.1063/1.3239469

Effect of Potential Energy Distribution on the Melting of Clusters
journal, February 2001


Ultrafine metal particles
journal, May 1976

  • Granqvist, C. G.; Buhrman, R. A.
  • Journal of Applied Physics, Vol. 47, Issue 5
  • DOI: 10.1063/1.322870

Melting, freezing, and coalescence of gold nanoclusters
text, January 1997


Homogeneous nucleation of mercury vapor
journal, May 1987

  • Martens, J.; Uchtmann, H.; Hensel, F.
  • The Journal of Physical Chemistry, Vol. 91, Issue 10
  • DOI: 10.1021/j100294a010

Formation of nascent soot and other condensed-phase materials in flames
journal, January 2011


Electronic Shell Structure and Abundances of Sodium Clusters
journal, July 1984


Homogeneous nucleation of supersaturated cesium vapor
journal, June 1999

  • Rudek, Markus M.; Katz, Joseph L.; Uchtmann, Hermann
  • The Journal of Chemical Physics, Vol. 110, Issue 23
  • DOI: 10.1063/1.479091

Unraveling the “Pressure Effect” in Nucleation
journal, September 2008


Irregular variations in the melting point of size-selected atomic clusters
journal, May 1998

  • Schmidt, Martin; Kusche, Robert; von Issendorff, Bernd
  • Nature, Vol. 393, Issue 6682
  • DOI: 10.1038/30415

The stage of nucleation of supercritical droplets with thermal effects in the regime of nonstationary diffusion and heat transfer
journal, October 2015

  • Kuchma, Anatoly E.; Shchekin, Alexander K.; Markov, Maxim N.
  • Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 483
  • DOI: 10.1016/j.colsurfa.2015.04.020

The role of cluster energy nonaccommodation in atmospheric sulfuric acid nucleation
journal, January 2010

  • Kurtén, Theo; Kuang, Chongai; Gómez, Pedro
  • The Journal of Chemical Physics, Vol. 132, Issue 2
  • DOI: 10.1063/1.3291213

Effect of Potential Energy Distribution on the Melting of Clusters
text, January 2001


Melting in Large Sodium Clusters:  An Orbital-Free Molecular Dynamics Study
journal, March 2001

  • Aguado, Andrés; López, Jose M.; Alonso, Julio A.
  • The Journal of Physical Chemistry B, Vol. 105, Issue 12
  • DOI: 10.1021/jp0018504

Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations
journal, April 2018

  • Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.
  • The Journal of Chemical Physics, Vol. 148, Issue 16
  • DOI: 10.1063/1.5026689

Homogeneous nucleation and growth of droplets in vapours
journal, January 1966


Clusters: A bridge across the disciplines of environment, materials science, and biology
journal, July 2006

  • Castleman, A. W.; Jena, P.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 28
  • DOI: 10.1073/pnas.0601780103

Ion-induced nucleation of pure biogenic particles
journal, May 2016

  • Kirkby, Jasper; Duplissy, Jonathan; Sengupta, Kamalika
  • Nature, Vol. 533, Issue 7604
  • DOI: 10.1038/nature17953

Structures and stabilities of Aln+, Aln, and Aln− (n=13–34) clusters
journal, February 2009

  • Aguado, Andrés; López, José M.
  • The Journal of Chemical Physics, Vol. 130, Issue 6
  • DOI: 10.1063/1.3075834

Surface Tension of Liquid Metals: Results from Measurements on Ground and in Space
journal, November 1995


Homogeneous nucleation in metal vapors. 5. A self-consistent kinetic model
journal, May 1977

  • Bauer, S. H.; Frurip, D. J.
  • The Journal of Physical Chemistry, Vol. 81, Issue 10
  • DOI: 10.1021/j100525a017

Homogeneous nucleation in metal vapors. 2. Dependence of the heat of condensation on cluster size
journal, May 1977

  • Freund, H. J.; Bauer, S. H.
  • The Journal of Physical Chemistry, Vol. 81, Issue 10
  • DOI: 10.1021/j100525a014

Experimental studies of gas-phase main-group metal clusters
journal, March 1988


Numerical Evidence of an Embryonic Orientational Phase Transition in Small Nitrogen Clusters
journal, June 1996


Magic numbers for metallic clusters and the principle of maximum hardness.
journal, February 1992

  • Harbola, M. K.
  • Proceedings of the National Academy of Sciences, Vol. 89, Issue 3
  • DOI: 10.1073/pnas.89.3.1036

Log-normal size distributions of ultrafine metal particles
journal, January 1976


Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications
journal, August 2016


Reaction mechanism of soot formation in flames
journal, February 2002

  • Frenklach, Michael
  • Physical Chemistry Chemical Physics, Vol. 4, Issue 11
  • DOI: 10.1039/b110045a

Reconsiderations of Nucleation Theory
journal, April 1962

  • Lothe, Jens; Pound, G. M.
  • The Journal of Chemical Physics, Vol. 36, Issue 8
  • DOI: 10.1063/1.1732832

Kinetic nucleation theory: A new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor
journal, July 1990

  • Girshick, Steven L.; Chiu, Chia‐Pin
  • The Journal of Chemical Physics, Vol. 93, Issue 2
  • DOI: 10.1063/1.459191