skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on October 22, 2020

Title: Ion acceleration in laser generated megatesla magnetic vortex

Abstract

We report that Magnetic Vortex Acceleration (MVA) from near critical density targets is one of the promising schemes of laser-driven ion acceleration. 3D particle-in-cell simulations are used to explore a more extensive laser-target parameter space than previously reported in the literature as well as to study the laser pulse coupling to the target, the structure of the fields, and the properties of the accelerated ion beam in the MVA scheme. The efficiency of acceleration depends on the coupling of the laser energy to the self-generated channel in the target. The accelerated proton beams demonstrate a high level of collimation with achromatic angular divergence, and carry a significant amount of charge. For petawatt-class lasers, this acceleration regime provides a favorable scaling of the maximum ion energy with the laser power for the optimized interaction parameters. Lastly, the megatesla-level magnetic fields generated by the laser-driven coaxial plasma structure in the target are a prerequisite for accelerating protons to the energy of several hundred mega-electron-volts.

Authors:
 [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Univ. of California, Oakland, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25); USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1577784
Alternate Identifier(s):
OSTI ID: 1571335
Grant/Contract Number:  
AC02-05CH11231; AC02-06CH11357; 17-SC-20-SC
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 26; Journal Issue: 10; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Park, J., Bulanov, S. S., Bin, J., Ji, Q., Steinke, S., Vay, J. -L., Geddes, C. G. R., Schroeder, C. B., Leemans, W. P., Schenkel, T., and Esarey, E. Ion acceleration in laser generated megatesla magnetic vortex. United States: N. p., 2019. Web. doi:10.1063/1.5094045.
Park, J., Bulanov, S. S., Bin, J., Ji, Q., Steinke, S., Vay, J. -L., Geddes, C. G. R., Schroeder, C. B., Leemans, W. P., Schenkel, T., & Esarey, E. Ion acceleration in laser generated megatesla magnetic vortex. United States. doi:10.1063/1.5094045.
Park, J., Bulanov, S. S., Bin, J., Ji, Q., Steinke, S., Vay, J. -L., Geddes, C. G. R., Schroeder, C. B., Leemans, W. P., Schenkel, T., and Esarey, E. Tue . "Ion acceleration in laser generated megatesla magnetic vortex". United States. doi:10.1063/1.5094045.
@article{osti_1577784,
title = {Ion acceleration in laser generated megatesla magnetic vortex},
author = {Park, J. and Bulanov, S. S. and Bin, J. and Ji, Q. and Steinke, S. and Vay, J. -L. and Geddes, C. G. R. and Schroeder, C. B. and Leemans, W. P. and Schenkel, T. and Esarey, E.},
abstractNote = {We report that Magnetic Vortex Acceleration (MVA) from near critical density targets is one of the promising schemes of laser-driven ion acceleration. 3D particle-in-cell simulations are used to explore a more extensive laser-target parameter space than previously reported in the literature as well as to study the laser pulse coupling to the target, the structure of the fields, and the properties of the accelerated ion beam in the MVA scheme. The efficiency of acceleration depends on the coupling of the laser energy to the self-generated channel in the target. The accelerated proton beams demonstrate a high level of collimation with achromatic angular divergence, and carry a significant amount of charge. For petawatt-class lasers, this acceleration regime provides a favorable scaling of the maximum ion energy with the laser power for the optimized interaction parameters. Lastly, the megatesla-level magnetic fields generated by the laser-driven coaxial plasma structure in the target are a prerequisite for accelerating protons to the energy of several hundred mega-electron-volts.},
doi = {10.1063/1.5094045},
journal = {Physics of Plasmas},
number = 10,
volume = 26,
place = {United States},
year = {2019},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on October 22, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Review of laser-driven ion sources and their applications
journal, April 2012

  • Daido, Hiroyuki; Nishiuchi, Mamiko; Pirozhkov, Alexander S.
  • Reports on Progress in Physics, Vol. 75, Issue 5
  • DOI: 10.1088/0034-4885/75/5/056401

Laser-Accelerated Ions from a Shock-Compressed Gas Foil
journal, October 2016


Self-focusing of short intense pulses in plasmas
journal, January 1987

  • Sun, Guo-Zheng; Ott, Edward; Lee, Y. C.
  • Physics of Fluids, Vol. 30, Issue 2
  • DOI: 10.1063/1.866349

Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy
journal, June 2015

  • Bulanov, S. S.; Esarey, E.; Schroeder, C. B.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 18, Issue 6
  • DOI: 10.1103/PhysRevSTAB.18.061302

Forward Ion Acceleration in Thin Films Driven by a High-Intensity Laser
journal, May 2000


Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme
journal, February 2018


Maximum Proton Energy above 85 MeV from the Relativistic Interaction of Laser Pulses with Micrometer Thick CH 2 Targets
journal, May 2016


Ion Acceleration Using Relativistic Pulse Shaping in Near-Critical-Density Plasmas
journal, August 2015


Collimated Multi-MeV Ion Beams from High-Intensity Laser Interactions with Underdense Plasma
journal, June 2006


Laser ion acceleration for hadron therapy
journal, December 2014


High-Energy Ions from Near-Critical Density Plasmas via Magnetic Vortex Acceleration
journal, September 2010


Effective laser driven proton acceleration from near critical density hydrogen plasma
journal, February 2016


Plasma Focusing for High-Energy Beams
journal, January 1987

  • Chen, Pisin; Su, J. J.; Katsouleas, T.
  • IEEE Transactions on Plasma Science, Vol. 15, Issue 2
  • DOI: 10.1109/TPS.1987.4316688

Petawatt class lasers worldwide
journal, January 2015

  • Danson, Colin; Hillier, David; Hopps, Nicholas
  • High Power Laser Science and Engineering, Vol. 3
  • DOI: 10.1017/hpl.2014.52

Energy Increase in Multi-MeV Ion Acceleration in the Interaction of a Short Pulse Laser with a Cluster-Gas Target
journal, October 2009


Optics in the relativistic regime
journal, April 2006

  • Mourou, Gerard A.; Tajima, Toshiki; Bulanov, Sergei V.
  • Reviews of Modern Physics, Vol. 78, Issue 2
  • DOI: 10.1103/RevModPhys.78.309

Ion acceleration by superintense laser-plasma interaction
journal, May 2013

  • Macchi, Andrea; Borghesi, Marco; Passoni, Matteo
  • Reviews of Modern Physics, Vol. 85, Issue 2
  • DOI: 10.1103/RevModPhys.85.751

Gamma-ray emission in near critical density plasmas
journal, November 2013


Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas
journal, December 2016

  • Zhu, Xing-Long; Yu, Tong-Pu; Sheng, Zheng-Ming
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13686

Diagnostics, Control and Performance Parameters for the BELLA High Repetition Rate Petawatt Class Laser
journal, August 2017

  • Nakamura, Kei; Mao, Hann-Shin; Gonsalves, Anthony J.
  • IEEE Journal of Quantum Electronics, Vol. 53, Issue 4
  • DOI: 10.1109/JQE.2017.2708601

Energetic proton generation in ultra-intense laser–solid interactions
journal, February 2001

  • Wilks, S. C.; Langdon, A. B.; Cowan, T. E.
  • Physics of Plasmas, Vol. 8, Issue 2, p. 542-549
  • DOI: 10.1063/1.1333697

Efficiency of ion acceleration by a relativistically strong laser pulse in an underdense plasma
journal, March 2001

  • Kuznetsov, A. V.; Esirkepov, T. Zh.; Kamenets, F. F.
  • Plasma Physics Reports, Vol. 27, Issue 3
  • DOI: 10.1134/1.1354219

Radiation pressure acceleration: The factors limiting maximum attainable ion energy
journal, April 2016

  • Bulanov, S. S.; Esarey, E.; Schroeder, C. B.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4946025

Dynamics of relativistic transparency and optical shuttering in expanding overdense plasmas
journal, August 2012

  • Palaniyappan, Sasi; Hegelich, B. Manuel; Wu, Hui-Chun
  • Nature Physics, Vol. 8, Issue 10
  • DOI: 10.1038/nphys2390

Warp-X: A new exascale computing platform for beam–plasma simulations
journal, November 2018

  • Vay, J. -L.; Almgren, A.; Bell, J.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 909
  • DOI: 10.1016/j.nima.2018.01.035

Generation of GeV protons from 1 PW laser interaction with near critical density targets
journal, April 2010

  • Bulanov, Stepan S.; Bychenkov, Valery Yu.; Chvykov, Vladimir
  • Physics of Plasmas, Vol. 17, Issue 4
  • DOI: 10.1063/1.3372840

Two-step perfectly matched layer for arbitrary-order pseudo-spectral analytical time-domain methods
journal, February 2019


Highly Efficient Relativistic-Ion Generation in the Laser-Piston Regime
journal, April 2004


Leveraging extreme laser-driven magnetic fields for gamma-ray generation and pair production
journal, March 2018

  • Jansen, O.; Wang, T.; Stark, D. J.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 5
  • DOI: 10.1088/1361-6587/aab222

Laser-driven proton scaling laws and new paths towards energy increase
journal, December 2005

  • Fuchs, J.; Antici, P.; d’Humières, E.
  • Nature Physics, Vol. 2, Issue 1
  • DOI: 10.1038/nphys199

Comment on “Collimated Multi-MeV Ion Beams from High-Intensity Laser Interactions with Underdense Plasma”
journal, January 2007


Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses
journal, July 2016

  • Kim, I. Jong; Pae, Ki Hong; Choi, Il Woo
  • Physics of Plasmas, Vol. 23, Issue 7
  • DOI: 10.1063/1.4958654

Radiation-Pressure Acceleration of Ion Beams Driven by Circularly Polarized Laser Pulses
journal, December 2009


High-power, kilojoule laser interactions with near-critical density plasma
journal, May 2011

  • Willingale, L.; Nilson, P. M.; Thomas, A. G. R.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3563438

High-flux positrons generation via two counter-propagating laser pulses irradiating near-critical-density plasmas
journal, October 2018

  • Liu, Jian-xun; Zhao, Yuan; Wang, Xin-ping
  • Physics of Plasmas, Vol. 25, Issue 10
  • DOI: 10.1063/1.5043627

Enhanced Multi-MeV Photon Emission by a Laser-Driven Electron Beam in a Self-Generated Magnetic Field
journal, May 2016


The extreme light infrastructure—nuclear physics (ELI-NP) facility: new horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams
journal, August 2018

  • Gales, S.; Tanaka, K. A.; Balabanski, D. L.
  • Reports on Progress in Physics, Vol. 81, Issue 9
  • DOI: 10.1088/1361-6633/aacfe8

Brilliant gamma-ray beam and electron–positron pair production by enhanced attosecond pulses
journal, December 2018


Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams
journal, November 2011

  • Haberberger, Dan; Tochitsky, Sergei; Fiuza, Frederico
  • Nature Physics, Vol. 8, Issue 1
  • DOI: 10.1038/nphys2130

Enhancement of Maximum Attainable Ion Energy in the Radiation Pressure Acceleration Regime Using a Guiding Structure
journal, March 2015