DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cellular responses to reactive oxygen species are predicted from molecular mechanisms

Abstract

Catalysis using iron–sulfur clusters and transition metals can be traced back to the last universal common ancestor. The damage to metalloproteins caused by reactive oxygen species (ROS) can prevent cell growth and survival when unmanaged, thus eliciting an essential stress response that is universal and fundamental in biology. Here we develop a computable multiscale description of the ROS stress response inEscherichia coli, called OxidizeME. We use OxidizeME to explain four key responses to oxidative stress: 1) ROS-induced auxotrophy for branched-chain, aromatic, and sulfurous amino acids; 2) nutrient-dependent sensitivity of growth rate to ROS; 3) ROS-specific differential gene expression separate from global growth-associated differential expression; and 4) coordinated expression of iron–sulfur cluster (ISC) and sulfur assimilation (SUF) systems for iron–sulfur cluster biosynthesis. These results show that we can now develop fundamental and quantitative genotype–phenotype relationships for stress responses on a genome-wide basis.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2] more »;  [2] « less
  1. Univ. of California San Diego, La Jolla, CA (United States)
  2. Univ. of California San Diego, La Jolla, CA (United States); Technical Univ. of Denmark, Lyngby (Denmark)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Univ. of California, Oakland, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1577615
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 116; Journal Issue: 28; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; science & technology; reactive oxygen species; oxidative stress; metabolism; protein expression; genome-scale model

Citation Formats

Yang, Laurence, Mih, Nathan, Anand, Amitesh, Park, Joon Ho, Tan, Justin, Yurkovich, James T., Monk, Jonathan M., Lloyd, Colton J., Sandberg, Troy E., Seo, Sang Woo, Kim, Donghyuk, Sastry, Anand V., Phaneuf, Patrick, Gao, Ye, Broddrick, Jared T., Chen, Ke, Heckmann, David, Szubin, Richard, Hefner, Ying, Feist, Adam M., and Palsson, Bernhard O. Cellular responses to reactive oxygen species are predicted from molecular mechanisms. United States: N. p., 2019. Web. doi:10.1073/pnas.1905039116.
Yang, Laurence, Mih, Nathan, Anand, Amitesh, Park, Joon Ho, Tan, Justin, Yurkovich, James T., Monk, Jonathan M., Lloyd, Colton J., Sandberg, Troy E., Seo, Sang Woo, Kim, Donghyuk, Sastry, Anand V., Phaneuf, Patrick, Gao, Ye, Broddrick, Jared T., Chen, Ke, Heckmann, David, Szubin, Richard, Hefner, Ying, Feist, Adam M., & Palsson, Bernhard O. Cellular responses to reactive oxygen species are predicted from molecular mechanisms. United States. https://doi.org/10.1073/pnas.1905039116
Yang, Laurence, Mih, Nathan, Anand, Amitesh, Park, Joon Ho, Tan, Justin, Yurkovich, James T., Monk, Jonathan M., Lloyd, Colton J., Sandberg, Troy E., Seo, Sang Woo, Kim, Donghyuk, Sastry, Anand V., Phaneuf, Patrick, Gao, Ye, Broddrick, Jared T., Chen, Ke, Heckmann, David, Szubin, Richard, Hefner, Ying, Feist, Adam M., and Palsson, Bernhard O. Wed . "Cellular responses to reactive oxygen species are predicted from molecular mechanisms". United States. https://doi.org/10.1073/pnas.1905039116. https://www.osti.gov/servlets/purl/1577615.
@article{osti_1577615,
title = {Cellular responses to reactive oxygen species are predicted from molecular mechanisms},
author = {Yang, Laurence and Mih, Nathan and Anand, Amitesh and Park, Joon Ho and Tan, Justin and Yurkovich, James T. and Monk, Jonathan M. and Lloyd, Colton J. and Sandberg, Troy E. and Seo, Sang Woo and Kim, Donghyuk and Sastry, Anand V. and Phaneuf, Patrick and Gao, Ye and Broddrick, Jared T. and Chen, Ke and Heckmann, David and Szubin, Richard and Hefner, Ying and Feist, Adam M. and Palsson, Bernhard O.},
abstractNote = {Catalysis using iron–sulfur clusters and transition metals can be traced back to the last universal common ancestor. The damage to metalloproteins caused by reactive oxygen species (ROS) can prevent cell growth and survival when unmanaged, thus eliciting an essential stress response that is universal and fundamental in biology. Here we develop a computable multiscale description of the ROS stress response inEscherichia coli, called OxidizeME. We use OxidizeME to explain four key responses to oxidative stress: 1) ROS-induced auxotrophy for branched-chain, aromatic, and sulfurous amino acids; 2) nutrient-dependent sensitivity of growth rate to ROS; 3) ROS-specific differential gene expression separate from global growth-associated differential expression; and 4) coordinated expression of iron–sulfur cluster (ISC) and sulfur assimilation (SUF) systems for iron–sulfur cluster biosynthesis. These results show that we can now develop fundamental and quantitative genotype–phenotype relationships for stress responses on a genome-wide basis.},
doi = {10.1073/pnas.1905039116},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 28,
volume = 116,
place = {United States},
year = {2019},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: OxidizeME: a multiscale description of metabolism and macromolecular expression that accounts for damage by ROS to macromolecules. (A) Mononuclear Fe(II) proteins are demetallated by ROS and mismetallated with alternative divalent metal ions. (B) Iron–sulfur clusters are oxidized and repaired. (C) Unincorporated Fe(II) spontaneously reacts with H2O2 via Fentonmore » chemistry, generating hydroxyl radicals that damage DNA, while the Dps protein stores unincorporated iron and protects DNA from damage. (D) Protein structural properties are computed to estimate the probability of metal cofactor damage by ROS (RSA: relative solvent accessibility). (E) Processes in A–D are integrated into a multiscale oxidative model, named OxidizeME. OxidizeME is used to compute the scope of macromolecular damage and the cellular response for varying intracellular concentrations of superoxide, hydrogen peroxide, and divalent metal ions (Fe(II), Mn(II), Co(II), Zn(II)); see SI Appendix for details.« less

Save / Share:

Works referenced in this record:

A domino effect in antifolate drug action in Escherichia coli
journal, August 2008

  • Kwon, Yun Kyung; Lu, Wenyun; Melamud, Eugene
  • Nature Chemical Biology, Vol. 4, Issue 10
  • DOI: 10.1038/nchembio.108

Bacterial persistence is an active σ S stress response to metabolic flux limitation
journal, September 2016

  • Radzikowski, Jakub Leszek; Vedelaar, Silke; Siegel, David
  • Molecular Systems Biology, Vol. 12, Issue 9
  • DOI: 10.15252/msb.20166998

Studies of IscR reveal a unique mechanism for metal-dependent regulation of DNA binding specificity
journal, May 2013

  • Rajagopalan, Senapathy; Teter, Sarah J.; Zwart, Petrus H.
  • Nature Structural & Molecular Biology, Vol. 20, Issue 6
  • DOI: 10.1038/nsmb.2568

Bacterial persistence from a system-level perspective
journal, August 2017

  • Radzikowski, Jakub Leszek; Schramke, Hannah; Heinemann, Matthias
  • Current Opinion in Biotechnology, Vol. 46
  • DOI: 10.1016/j.copbio.2017.02.012

Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression
journal, January 2017

  • Ma, Ding; Yang, Laurence; Fleming, Ronan M. T.
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep40863

Use of Adaptive Laboratory Evolution To Discover Key Mutations Enabling Rapid Growth of Escherichia coli K-12 MG1655 on Glucose Minimal Medium
journal, October 2014

  • LaCroix, Ryan A.; Sandberg, Troy E.; O'Brien, Edward J.
  • Applied and Environmental Microbiology, Vol. 81, Issue 1
  • DOI: 10.1128/AEM.02246-14

Mycobacteria and the Intraphagosomal Environment: Take It With a Pinch of Salt(s)!
journal, May 2013

  • Soldati, Thierry; Neyrolles, Olivier
  • Traffic, Vol. 14, Issue 6
  • DOI: 10.1111/tra.12067

The Mismetallation of Enzymes during Oxidative Stress
journal, August 2014


The quantitative and condition-dependent Escherichia coli proteome
journal, December 2015

  • Schmidt, Alexander; Kochanowski, Karl; Vedelaar, Silke
  • Nature Biotechnology, Vol. 34, Issue 1
  • DOI: 10.1038/nbt.3418

SoxRS-Regulated Expression and Genetic Analysis of the yggX Gene of Escherichia coli
journal, October 2003


NADPH: ferredoxin oxidoreductase acts as a paraquat diaphorase and is a member of the soxRS regulon.
journal, February 1994

  • Liochev, S. I.; Hausladen, A.; Beyer, W. F.
  • Proceedings of the National Academy of Sciences, Vol. 91, Issue 4
  • DOI: 10.1073/pnas.91.4.1328

The physiology and habitat of the last universal common ancestor
journal, July 2016


A role of ygfZ in the Escherichia coli response to plumbagin challenge
journal, January 2010

  • Lin, Ching-Nan; Syu, Wan-Jr; Sun, Wei-Sheng W.
  • Journal of Biomedical Science, Vol. 17, Issue 1
  • DOI: 10.1186/1423-0127-17-84

Cobalt Stress in Escherichia coli
journal, July 2007

  • Ranquet, Caroline; Ollagnier-de-Choudens, Sandrine; Loiseau, Laurent
  • Journal of Biological Chemistry, Vol. 282, Issue 42
  • DOI: 10.1074/jbc.M702519200

Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation
journal, October 2017

  • Chen, Ke; Gao, Ye; Mih, Nathan
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 43
  • DOI: 10.1073/pnas.1705524114

A role for tetrahydrofolates in the metabolism of iron-sulfur clusters in all domains of life
journal, May 2010

  • Waller, J. C.; Alvarez, S.; Naponelli, V.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 23
  • DOI: 10.1073/pnas.0911586107

DynamicME: dynamic simulation and refinement of integrated models of metabolism and protein expression
journal, January 2019


Coordinate Regulation of the Suf and Isc Fe-S Cluster Biogenesis Pathways by IscR Is Essential for Viability of Escherichia coli
journal, September 2014

  • Mettert, E. L.; Kiley, P. J.
  • Journal of Bacteriology, Vol. 196, Issue 24
  • DOI: 10.1128/JB.01975-14

The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity
journal, May 2009

  • Macomber, L.; Imlay, J. A.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 20
  • DOI: 10.1073/pnas.0812808106

Oxidative stress and disruption of labile iron generate specific auxotrophic requirements in Salmonella enterica
journal, January 2009


Modeling the multi-scale mechanisms of macromolecular resource allocation
journal, October 2018

  • Yang, Laurence; Yurkovich, James T.; King, Zachary A.
  • Current Opinion in Microbiology, Vol. 45
  • DOI: 10.1016/j.mib.2018.01.002

Superoxide Imposes Leakage of Sulfite fromEscherichia coli
journal, November 1997

  • Benov, Ludmil; Fridovich, Irwin
  • Archives of Biochemistry and Biophysics, Vol. 347, Issue 2
  • DOI: 10.1006/abbi.1997.0343

Iron homeostasis in Mycobacterium tuberculosis is essential for persistence
journal, November 2018


Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production
journal, January 2013

  • Brynildsen, Mark P.; Winkler, Jonathan A.; Spina, Catherine S.
  • Nature Biotechnology, Vol. 31, Issue 2
  • DOI: 10.1038/nbt.2458

Multiscale Modeling of Metabolism and Macromolecular Synthesis in E. coli and Its Application to the Evolution of Codon Usage
journal, September 2012


The power to reduce: pyridine nucleotides – small molecules with a multitude of functions
journal, February 2007

  • Pollak, Nadine; Dölle, Christian; Ziegler, Mathias
  • Biochemical Journal, Vol. 402, Issue 2
  • DOI: 10.1042/BJ20061638

COBRAme: A computational framework for genome-scale models of metabolism and gene expression
journal, July 2018


Genome‐scale models of metabolism and gene expression extend and refine growth phenotype prediction
journal, January 2013

  • O'Brien, Edward J.; Lerman, Joshua A.; Chang, Roger L.
  • Molecular Systems Biology, Vol. 9, Issue 1
  • DOI: 10.1038/msb.2013.52

Evolutionary adaptations that enable enzymes to tolerate oxidative stress
journal, August 2019


Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese
journal, March 2011

  • Sobota, J. M.; Imlay, J. A.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 13
  • DOI: 10.1073/pnas.1100410108

Atmospheric oxygenation three billion years ago
journal, September 2013

  • Crowe, Sean A.; Døssing, Lasse N.; Beukes, Nicolas J.
  • Nature, Vol. 501, Issue 7468
  • DOI: 10.1038/nature12426

ALEdb 1.0: a database of mutations from adaptive laboratory evolution experimentation
journal, October 2018

  • Phaneuf, Patrick V.; Gosting, Dennis; Palsson, Bernhard O.
  • Nucleic Acids Research, Vol. 47, Issue D1
  • DOI: 10.1093/nar/gky983

The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium
journal, May 2013


The Mechanism of the Auxotrophy for Sulfur-containing Amino Acids Imposed upon Escherichia coli by Superoxide
journal, August 1996

  • Benov, Ludmil; Kredich, Nicholas M.; Fridovich, Irwin
  • Journal of Biological Chemistry, Vol. 271, Issue 35
  • DOI: 10.1074/jbc.271.35.21037

Why Superoxide Imposes an Aromatic Amino Acid Auxotrophy on Escherichia coli : THE TRANSKETOLASE CONNECTION
journal, February 1999

  • Benov, Ludmil; Fridovich, Irwin
  • Journal of Biological Chemistry, Vol. 274, Issue 7
  • DOI: 10.1074/jbc.274.7.4202

Reprint of: Iron/sulfur proteins biogenesis in prokaryotes: Formation, regulation and diversity
journal, August 2013

  • Roche, Béatrice; Aussel, Laurent; Ezraty, Benjamin
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1827, Issue 8-9
  • DOI: 10.1016/j.bbabio.2013.05.001

iML1515, a knowledgebase that computes Escherichia coli traits
journal, October 2017

  • Monk, Jonathan M.; Lloyd, Colton J.; Brunk, Elizabeth
  • Nature Biotechnology, Vol. 35, Issue 10
  • DOI: 10.1038/nbt.3956

Iron-sulphur clusters and the problem with oxygen
journal, February 2006


Escherichia coli RIC Is Able to Donate Iron to Iron-Sulfur Clusters
journal, April 2014


solveME: fast and reliable solution of nonlinear ME models
journal, September 2016


Where in the world do bacteria experience oxidative stress?: Oxidative stress in natural environments
journal, November 2018


Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression
preprint, January 2016


Works referencing / citing this record:

Adaptive evolution reveals a tradeoff between growth rate and oxidative stress during naphthoquinone-based aerobic respiration
journal, November 2019

  • Anand, Amitesh; Chen, Ke; Yang, Laurence
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 50
  • DOI: 10.1073/pnas.1909987116

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.