skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on August 16, 2020

Title: Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence

Abstract

Here using 2.5 dimensional kinetic particle-in-cell simulations, we simulate reconnection conditions appropriate for the magnetosheath and solar wind, i.e., plasma beta (ratio of gas pressure to magnetic pressure) greater than 1 and low magnetic shear (strong guide field). Changing the simulation domain size, we find that the ion response varies greatly. For reconnecting regions with scales comparable to the ion inertial length, the ions do not respond to the reconnection dynamics leading to “electron-only” reconnection with very large quasisteady reconnection rates. Note that in these simulations, the ion Larmor radius is comparable to the ion inertial length. Moreover, the transition to a more traditional “ion-coupled” reconnection is gradual as the reconnection domain size increases, with the ions becoming frozen-in in the exhaust when the magnetic island width in the normal direction reaches many ion inertial lengths. During this transition, the quasisteady reconnection rate decreases until the ions are fully coupled, ultimately reaching an asymptotic value. The scaling of the ion outflow velocity with the exhaust width during this electron-only to ion-coupled transition is found to be consistent with a theoretical model of a newly reconnected field line. In order to have a fully frozen-in ion exhaust with ion flows comparablemore » to the reconnection Alfvén speed, an exhaust width of at least several ion inertial lengths is needed. In turbulent systems with reconnection occurring between magnetic bubbles associated with fluctuations, using geometric arguments, we estimate that fully ion-coupled reconnection requires magnetic bubble length scales of at least several tens of ion inertial lengths.« less

Authors:
 [1]; ORCiD logo [1];  [2]; ORCiD logo [1]; ORCiD logo [3];  [4];  [5]; ORCiD logo [6]; ORCiD logo [7];  [1]; ORCiD logo [3];  [1]
  1. Univ. of Delaware, Newark, DE (United States)
  2. Univ. of California, Berkeley, CA (United States)
  3. Univ. of Maryland, College Park, MD (United States)
  4. Princeton Univ., NJ (United States)
  5. Univ. of Chicago, IL (United States)
  6. Univ. of Arizona, Tucson, AZ (United States)
  7. West Virginia Univ., Morgantown, WV (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Univ. of California, Oakland, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Science Foundation (NSF)
OSTI Identifier:
1577589
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 26; Journal Issue: 8; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Sharma Pyakurel, P., Shay, M. A., Phan, T. D., Matthaeus, W. H., Drake, J. F., TenBarge, J. M., Haggerty, C. C., Klein, K. G., Cassak, P. A., Parashar, T. N., Swisdak, M., and Chasapis, A. Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence. United States: N. p., 2019. Web. doi:10.1063/1.5090403.
Sharma Pyakurel, P., Shay, M. A., Phan, T. D., Matthaeus, W. H., Drake, J. F., TenBarge, J. M., Haggerty, C. C., Klein, K. G., Cassak, P. A., Parashar, T. N., Swisdak, M., & Chasapis, A. Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence. United States. doi:10.1063/1.5090403.
Sharma Pyakurel, P., Shay, M. A., Phan, T. D., Matthaeus, W. H., Drake, J. F., TenBarge, J. M., Haggerty, C. C., Klein, K. G., Cassak, P. A., Parashar, T. N., Swisdak, M., and Chasapis, A. Fri . "Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence". United States. doi:10.1063/1.5090403.
@article{osti_1577589,
title = {Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence},
author = {Sharma Pyakurel, P. and Shay, M. A. and Phan, T. D. and Matthaeus, W. H. and Drake, J. F. and TenBarge, J. M. and Haggerty, C. C. and Klein, K. G. and Cassak, P. A. and Parashar, T. N. and Swisdak, M. and Chasapis, A.},
abstractNote = {Here using 2.5 dimensional kinetic particle-in-cell simulations, we simulate reconnection conditions appropriate for the magnetosheath and solar wind, i.e., plasma beta (ratio of gas pressure to magnetic pressure) greater than 1 and low magnetic shear (strong guide field). Changing the simulation domain size, we find that the ion response varies greatly. For reconnecting regions with scales comparable to the ion inertial length, the ions do not respond to the reconnection dynamics leading to “electron-only” reconnection with very large quasisteady reconnection rates. Note that in these simulations, the ion Larmor radius is comparable to the ion inertial length. Moreover, the transition to a more traditional “ion-coupled” reconnection is gradual as the reconnection domain size increases, with the ions becoming frozen-in in the exhaust when the magnetic island width in the normal direction reaches many ion inertial lengths. During this transition, the quasisteady reconnection rate decreases until the ions are fully coupled, ultimately reaching an asymptotic value. The scaling of the ion outflow velocity with the exhaust width during this electron-only to ion-coupled transition is found to be consistent with a theoretical model of a newly reconnected field line. In order to have a fully frozen-in ion exhaust with ion flows comparable to the reconnection Alfvén speed, an exhaust width of at least several ion inertial lengths is needed. In turbulent systems with reconnection occurring between magnetic bubbles associated with fluctuations, using geometric arguments, we estimate that fully ion-coupled reconnection requires magnetic bubble length scales of at least several tens of ion inertial lengths.},
doi = {10.1063/1.5090403},
journal = {Physics of Plasmas},
number = 8,
volume = 26,
place = {United States},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on August 16, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Magnetic Reconnection as a Driver for a Sub-ion-scale Cascade in Plasma Turbulence
journal, November 2017

  • Franci, Luca; Cerri, Silvio Sergio; Califano, Francesco
  • The Astrophysical Journal, Vol. 850, Issue 1
  • DOI: 10.3847/2041-8213/aa93fb

Bifurcated Structure of the Electron Diffusion Region in Three-Dimensional Magnetic Reconnection
journal, June 2013


Three-dimensional particle simulations of collisionless magnetic reconnection
journal, January 2002


Fluid vs. kinetic magnetic reconnection with strong guide fields
journal, October 2015

  • Stanier, A.; Simakov, Andrei N.; Chacón, L.
  • Physics of Plasmas, Vol. 22, Issue 10
  • DOI: 10.1063/1.4932330

Predicted impacts of proton temperature anisotropy on solar wind turbulence
journal, March 2015

  • Klein, K. G.; Howes, G. G.
  • Physics of Plasmas, Vol. 22, Issue 3
  • DOI: 10.1063/1.4914933

Fast reconnection in high temperature plasmas
journal, January 1995

  • Kleva, Robert G.; Drake, J. F.; Waelbroeck, F. L.
  • Physics of Plasmas, Vol. 2, Issue 1
  • DOI: 10.1063/1.871095

Super-Alfvénic Propagation and Damping of Reconnection Onset Signatures: RECONNECTION KAW DAMPING
journal, January 2018

  • Sharma Pyakurel, P.; Shay, M. A.; Haggerty, C. C.
  • Journal of Geophysical Research: Space Physics, Vol. 123, Issue 1
  • DOI: 10.1002/2017JA024606

Reconnection and Electron Temperature Anisotropy in Sub-Proton Scale Plasma Turbulence
journal, February 2014


Jet Deflection by Very Weak Guide Fields during Magnetic Reconnection
journal, September 2011


Role of the Plasmoid Instability in Magnetohydrodynamic Turbulence
journal, October 2018


Hall current effect on tearing mode instability
journal, June 1983


Collisionless magnetic reconnection in large-scale electron-positron plasmas
journal, July 2007

  • Daughton, William; Karimabadi, Homa
  • Physics of Plasmas, Vol. 14, Issue 7
  • DOI: 10.1063/1.2749494

Reconnection events in two-dimensional Hall magnetohydrodynamic turbulence
journal, September 2012

  • Donato, S.; Servidio, S.; Dmitruk, P.
  • Physics of Plasmas, Vol. 19, Issue 9
  • DOI: 10.1063/1.4754151

Electron scale structures of thin current sheets in magnetic reconnection
journal, January 2012


The Hall fields and fast magnetic reconnection
journal, January 2008

  • Drake, J. F.; Shay, M. A.; Swisdak, M.
  • Physics of Plasmas, Vol. 15, Issue 4
  • DOI: 10.1063/1.2901194

Collisionless magnetic reconnection in a three-dimensional open system
journal, November 2001

  • Pritchett, P. L.
  • Journal of Geophysical Research: Space Physics, Vol. 106, Issue A11
  • DOI: 10.1029/2001JA000016

Astrophysical Gyrokinetics: Basic Equations and Linear Theory
journal, November 2006

  • Howes, Gregory G.; Cowley, Steven C.; Dorland, William
  • The Astrophysical Journal, Vol. 651, Issue 1
  • DOI: 10.1086/506172

Three-dimensional spatial structures of solar wind turbulence from 10 000-km to 100-km scales
journal, January 2011


The influence of a mean magnetic field on three-dimensional magnetohydrodynamic turbulence
journal, December 1994


Reconnection With Magnetic Flux Pileup at the Interface of Converging Jets at the Magnetopause
journal, February 2019

  • Øieroset, M.; Phan, T. D.; Drake, J. F.
  • Geophysical Research Letters, Vol. 46, Issue 4
  • DOI: 10.1029/2018GL080994

Multipoint Measurements of the Electron Jet of Symmetric Magnetic Reconnection with a Moderate Guide Field
journal, June 2017


Scaling of asymmetric magnetic reconnection: General theory and collisional simulations
journal, October 2007

  • Cassak, P. A.; Shay, M. A.
  • Physics of Plasmas, Vol. 14, Issue 10
  • DOI: 10.1063/1.2795630

In situ evidence of magnetic reconnection in turbulent plasma
journal, March 2007

  • Retinò, A.; Sundkvist, D.; Vaivads, A.
  • Nature Physics, Vol. 3, Issue 4
  • DOI: 10.1038/nphys574

Strong current sheet at a magnetosheath jet: Kinetic structure and electron acceleration: KINETIC STRUCTURE AND ACCELERATION AT MSH JET
journal, October 2016

  • Eriksson, E.; Vaivads, A.; Graham, D. B.
  • Journal of Geophysical Research: Space Physics, Vol. 121, Issue 10
  • DOI: 10.1002/2016JA023146

Magnetohydrodynamic Turbulence Mediated by Reconnection
journal, July 2017


Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection. I. Macroscopic effects of the electron flows
journal, August 2015

  • Muñoz, P. A.; Told, D.; Kilian, P.
  • Physics of Plasmas, Vol. 22, Issue 8
  • DOI: 10.1063/1.4928381

Three-dimensional Hall magnetic reconnection
journal, November 2002

  • Huba, J. D.; Rudakov, L. I.
  • Physics of Plasmas, Vol. 9, Issue 11
  • DOI: 10.1063/1.1514970

Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas
journal, April 2011

  • Daughton, W.; Roytershteyn, V.; Karimabadi, H.
  • Nature Physics, Vol. 7, Issue 7
  • DOI: 10.1038/nphys1965

Small amplitude waves in high β plasmas
journal, February 1969


MMS Observation of Magnetic Reconnection in the Turbulent Magnetosheath: RECONNECTION IN THE MAGNETOSHEATH
journal, November 2017

  • Vörös, Z.; Yordanova, E.; Varsani, A.
  • Journal of Geophysical Research: Space Physics, Vol. 122, Issue 11
  • DOI: 10.1002/2017JA024535

Transition from antiparallel to component magnetic reconnection
journal, January 2005


Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas
journal, January 2013

  • Karimabadi, H.; Roytershteyn, V.; Wan, M.
  • Physics of Plasmas, Vol. 20, Issue 1
  • DOI: 10.1063/1.4773205

Steady-State Properties of Driven Magnetic Reconnection in 2D Electron Magnetohydrodynamics
journal, December 2007


Ion-Controlled Collisionless Magnetic Reconnection
journal, November 1995


Collisionless reconnection in the large guide field regime: Gyrokinetic versus particle-in-cell simulations
journal, February 2014

  • TenBarge, J. M.; Daughton, W.; Karimabadi, H.
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4867068

Super-Alfvénic Propagation of Substorm Reconnection Signatures and Poynting Flux
journal, August 2011


The role of electron dissipation on the rate of collisionless magnetic reconnection
journal, October 1998

  • Shay, M. A.; Drake, J. F.
  • Geophysical Research Letters, Vol. 25, Issue 20
  • DOI: 10.1029/1998GL900036

Turbulent magnetic reconnection
journal, January 1986

  • Matthaeus, W. H.; Lamkin, S. L.
  • Physics of Fluids, Vol. 29, Issue 8
  • DOI: 10.1063/1.866004

Flux Rope Dynamics: Experimental Study of Bouncing and Merging
journal, December 2010


Statistical Analysis of Current Sheets in Three-Dimensional Magnetohydrodynamic Turbulence
journal, June 2013

  • Zhdankin, Vladimir; Uzdensky, Dmitri A.; Perez, Jean C.
  • The Astrophysical Journal, Vol. 771, Issue 2
  • DOI: 10.1088/0004-637X/771/2/124

Turbulent heating due to magnetic reconnection
journal, January 2018

  • Shay, M. A.; Haggerty, C. C.; Matthaeus, W. H.
  • Physics of Plasmas, Vol. 25, Issue 1
  • DOI: 10.1063/1.4993423

Electron scale structures and magnetic reconnection signatures in the turbulent magnetosheath: CURRENT SHEETS IN THE MAGNETOSHEATH
journal, June 2016

  • Yordanova, E.; Vörös, Z.; Varsani, A.
  • Geophysical Research Letters, Vol. 43, Issue 12
  • DOI: 10.1002/2016GL069191

Collisionless Reconnection in an Electron-Positron Plasma
journal, December 2005


Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport
journal, February 1996

  • Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.
  • Journal of Geophysical Research: Space Physics, Vol. 101, Issue A2
  • DOI: 10.1029/95JA02588

Magnetic structure of the reconnection layer and core field generation in plasmoids
journal, June 1999

  • Karimabadi, H.; Krauss-Varban, D.; Omidi, N.
  • Journal of Geophysical Research: Space Physics, Vol. 104, Issue A6
  • DOI: 10.1029/1999JA900089

Three Dimensional Anisotropic k Spectra of Turbulence at Subproton Scales in the Solar Wind
journal, September 2010


Reconnection and small-scale fields in 2D-3V hybrid-kinetic driven turbulence simulations
journal, February 2017


On the nature of three-dimensional magnetic reconnection
journal, January 2003


Electron heating during magnetic reconnection: A simulation scaling study
journal, December 2014

  • Shay, M. A.; Haggerty, C. C.; Phan, T. D.
  • Physics of Plasmas, Vol. 21, Issue 12
  • DOI: 10.1063/1.4904203

Geospace Environmental Modeling (GEM) Magnetic Reconnection Challenge
journal, March 2001

  • Birn, J.; Drake, J. F.; Shay, M. A.
  • Journal of Geophysical Research: Space Physics, Vol. 106, Issue A3
  • DOI: 10.1029/1999JA900449

Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind
journal, January 1990

  • Matthaeus, William H.; Goldstein, Melvyn L.; Roberts, D. Aaron
  • Journal of Geophysical Research, Vol. 95, Issue A12
  • DOI: 10.1029/JA095iA12p20673

Evidence for an Elongated ( > 60 Ion Skin Depths) Electron Diffusion Region during Fast Magnetic Reconnection
journal, December 2007


Transition to whistler mediated magnetic reconnection
journal, January 1994

  • Mandt, M. E.; Denton, R. E.; Drake, J. F.
  • Geophysical Research Letters, Vol. 21, Issue 1
  • DOI: 10.1029/93GL03382

Exploring the statistics of magnetic reconnection X-points in kinetic particle-in-cell turbulence
journal, October 2017

  • Haggerty, C. C.; Parashar, T. N.; Matthaeus, W. H.
  • Physics of Plasmas, Vol. 24, Issue 10
  • DOI: 10.1063/1.5001722

Do dispersive waves play a role in collisionless magnetic reconnection?
journal, February 2014

  • Liu, Yi-Hsin; Daughton, W.; Karimabadi, H.
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4865579

Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath
journal, May 2018


Structure of the dissipation region during collisionless magnetic reconnection
journal, May 1998

  • Shay, M. A.; Drake, J. F.; Denton, R. E.
  • Journal of Geophysical Research: Space Physics, Vol. 103, Issue A5
  • DOI: 10.1029/97JA03528

Fast Reconnection in Nonrelativistic 2D Electron-Positron Plasmas
journal, July 2008


A saddle-node bifurcation model of magnetic reconnection onset
journal, June 2010

  • Cassak, P. A.; Shay, M. A.; Drake, J. F.
  • Physics of Plasmas, Vol. 17, Issue 6
  • DOI: 10.1063/1.3435269

The competition of electron and ion heating during magnetic reconnection: PARTITION OF HEATING IN RECONNECTION
journal, November 2015

  • Haggerty, C. C.; Shay, M. A.; Drake, J. F.
  • Geophysical Research Letters, Vol. 42, Issue 22
  • DOI: 10.1002/2015GL065961

Alfvénic collisionless magnetic reconnection and the Hall term
journal, March 2001

  • Shay, M. A.; Drake, J. F.; Rogers, B. N.
  • Journal of Geophysical Research: Space Physics, Vol. 106, Issue A3
  • DOI: 10.1029/1999JA001007

Magnetic reconnection
journal, March 2010


Flux Pileup in Collisionless Magnetic Reconnection: Bursty Interaction of Large Flux Ropes
journal, July 2011


Dissipation and Reconnection in Boundary-Driven Reduced Magnetohydrodynamics
journal, November 2014

  • Wan, Minping; Rappazzo, Antonio Franco; Matthaeus, William H.
  • The Astrophysical Journal, Vol. 797, Issue 1
  • DOI: 10.1088/0004-637X/797/1/63

Evidence of critical balance in kinetic Alfvén wave turbulence simulations
journal, May 2012

  • TenBarge, J. M.; Howes, G. G.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.3693974

Role of Dispersive Waves in Collisionless Magnetic Reconnection
journal, October 2001


The scaling of collisionless, magnetic reconnection for large systems
journal, July 1999

  • Shay, M. A.; Drake, J. F.; Rogers, B. N.
  • Geophysical Research Letters, Vol. 26, Issue 14
  • DOI: 10.1029/1999GL900481

Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades in Magnetized Weakly Collisional Plasmas
journal, May 2009

  • Schekochihin, A. A.; Cowley, S. C.; Dorland, W.
  • The Astrophysical Journal Supplement Series, Vol. 182, Issue 1
  • DOI: 10.1088/0067-0049/182/1/310

Cheyenne: SGI ICE XA Cluster
service, January 2017

  • Laboratory, Computational And Information Systems
  • UCAR/NCAR
  • DOI: 10.5065/D6RX99HX

Can Hall Magnetohydrodynamics Explain Plasma Turbulence at Sub-ion Scales?
journal, January 2019

  • Papini, Emanuele; Franci, Luca; Landi, Simone
  • The Astrophysical Journal, Vol. 870, Issue 1
  • DOI: 10.3847/1538-4357/aaf003

Disruption of sheet-like structures in Alfvénic turbulence by magnetic reconnection
journal, March 2017

  • Mallet, A.; Schekochihin, A. A.; Chandran, B. D. G.
  • Monthly Notices of the Royal Astronomical Society, Vol. 468, Issue 4
  • DOI: 10.1093/mnras/stx670

Statistics of magnetic reconnection in two-dimensional magnetohydrodynamic turbulence
journal, March 2010

  • Servidio, S.; Matthaeus, W. H.; Shay, M. A.
  • Physics of Plasmas, Vol. 17, Issue 3
  • DOI: 10.1063/1.3368798