skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electromagnetic showers beyond shower shapes

Authors:
; ;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1577189
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment
Additional Journal Information:
Journal Name: Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment Journal Volume: 951 Journal Issue: C; Journal ID: ISSN 0168-9002
Publisher:
Elsevier
Country of Publication:
Netherlands
Language:
English

Citation Formats

de Oliveira, Luke, Nachman, Benjamin, and Paganini, Michela. Electromagnetic showers beyond shower shapes. Netherlands: N. p., 2020. Web. doi:10.1016/j.nima.2019.162879.
de Oliveira, Luke, Nachman, Benjamin, & Paganini, Michela. Electromagnetic showers beyond shower shapes. Netherlands. doi:https://doi.org/10.1016/j.nima.2019.162879
de Oliveira, Luke, Nachman, Benjamin, and Paganini, Michela. Wed . "Electromagnetic showers beyond shower shapes". Netherlands. doi:https://doi.org/10.1016/j.nima.2019.162879.
@article{osti_1577189,
title = {Electromagnetic showers beyond shower shapes},
author = {de Oliveira, Luke and Nachman, Benjamin and Paganini, Michela},
abstractNote = {},
doi = {10.1016/j.nima.2019.162879},
journal = {Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment},
number = C,
volume = 951,
place = {Netherlands},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: https://doi.org/10.1016/j.nima.2019.162879

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Jet-images: computer vision inspired techniques for jet tagging
journal, February 2015

  • Cogan, Josh; Kagan, Michael; Strauss, Emanuel
  • Journal of High Energy Physics, Vol. 2015, Issue 2
  • DOI: 10.1007/JHEP02(2015)118

Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data
journal, October 2014


Densely Connected Convolutional Networks
conference, July 2017

  • Huang, Gao; Liu, Zhuang; Maaten, Laurens van der
  • 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  • DOI: 10.1109/CVPR.2017.243

Background rejection in NEXT using deep neural networks
journal, January 2017


Review of Particle Physics
journal, August 2018


The use of maximum entropy in electromagnetic calorimeter event reconstruction
journal, November 1996

  • Thomson, M. A.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 382, Issue 3
  • DOI: 10.1016/S0168-9002(96)00771-1

Playing tag with ANN: boosted top identification with pattern recognition
journal, July 2015

  • Almeida, Leandro G.; Backović, Mihailo; Cliche, Mathieu
  • Journal of High Energy Physics, Vol. 2015, Issue 7
  • DOI: 10.1007/JHEP07(2015)086

Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multilayer Calorimeters
journal, January 2018


Electron efficiency measurements with the ATLAS detector using 2012 LHC proton–proton collision data
journal, March 2017


Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber
journal, March 2017


Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data
journal, December 2016


Jet-images — deep learning edition
journal, July 2016

  • de Oliveira, Luke; Kagan, Michael; Mackey, Lester
  • Journal of High Energy Physics, Vol. 2016, Issue 7
  • DOI: 10.1007/JHEP07(2016)069

Deep-learning top taggers or the end of QCD?
journal, May 2017

  • Kasieczka, Gregor; Plehn, Tilman; Russell, Michael
  • Journal of High Energy Physics, Vol. 2017, Issue 5
  • DOI: 10.1007/JHEP05(2017)006

Deep learning in color: towards automated quark/gluon jet discrimination
journal, January 2017

  • Komiske, Patrick T.; Metodiev, Eric M.; Schwartz, Matthew D.
  • Journal of High Energy Physics, Vol. 2017, Issue 1
  • DOI: 10.1007/JHEP01(2017)110

Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC
journal, September 2012


A convolutional neural network neutrino event classifier
journal, September 2016