DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Revealing Electronic Signatures of Lattice Oxygen Redox in Lithium Ruthenates and Implications for High-Energy Li-Ion Battery Material Designs

Abstract

Anion redox in lithium transition-metal oxides such as Li2RuO3 and Li2MnO3 has catalyzed intensive research efforts to find transition-metal oxides with anion redox that may boost the energy density of lithium-ion batteries. The physical origin of the observed anion redox remains debatable, and more direct experimental evidence is needed. In this work, we have shown electronic signatures of oxygen-oxygen coupling, direct evidence central to lattice oxygen redox (O2-/(O-2)(n-)), in charged Li2-xRuO3 after Ru oxidation (Ru-4(+)/Ru5+) upon first electron removal with lithium deintercalation. Experimental Ru L-3-edge high-energy-resolution fluorescence-detected X-ray absorption spectra (HERFD-XAS), supported by ab initio simulations, revealed that the increased intensity in the high-energy shoulder upon lithium deintercalation resulted from increased O-O coupling, inducing (O-O) sigma*-like states with pi overlap with Ru d-manifolds, in agreement with O K-edge XAS spectra. Experimental and simulated O K-edge X-ray emission spectra further supported this observation with the broadening of the oxygen nonbonding feature upon charging, also originated from (O-O) sigma* states. This lattice oxygen redox of Li2-xRuO3 was accompanied by a small amount of O-2 evolution in the first charge from differential electrochemistry mass spectrometry but diminished in the subsequent cycles, in agreement with the more reduced states of Ru in later cyclesmore » from Ru L-3-edge HERFD-XAS. These observations indicated that Ru redox contributed more to discharge capacities after the first cycle. This study has pinpointed the key spectral fingerprints related to lattice oxygen redox from a molecular level and constructed a transferrable framework to rationally interpret the spectroscopic features by combining advanced experiments and theoretical calculations to design materials for Li-ion batteries and electrocatalysis applications.« less

Authors:
 [1];  [1];  [2]; ORCiD logo [1]; ORCiD logo [3];  [1];  [4];  [5]; ORCiD logo [6];  [2];  [2];  [4];  [3];  [7];  [7]; ORCiD logo [8]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Research Lab. of Electronics
  4. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  6. National Institute of Standards and Technology, Gaithersburg 20899, Maryland, United States
  7. BMW Group, Petuelring 130, Munich 80788, Germany
  8. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering, Research Lab. of Electronics, Dept. of Mechanical Engineering
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States); SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE Office of Science (SC)
OSTI Identifier:
1576798
Alternate Identifier(s):
OSTI ID: 1615148
Grant/Contract Number:  
AC02-76SF00515; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 31; Journal Issue: 19; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Yu, Yang, Karayaylali, Pinar, Nowak, Stanisław H., Giordano, Livia, Gauthier, Magali, Hong, Wesley, Kou, Ronghui, Li, Qinghao, Vinson, John, Kroll, Thomas, Sokaras, Dimosthenis, Sun, Cheng-Jun, Charles, Nenian, Maglia, Filippo, Jung, Roland, and Shao-Horn, Yang. Revealing Electronic Signatures of Lattice Oxygen Redox in Lithium Ruthenates and Implications for High-Energy Li-Ion Battery Material Designs. United States: N. p., 2019. Web. doi:10.1021/acs.chemmater.9b01821.
Yu, Yang, Karayaylali, Pinar, Nowak, Stanisław H., Giordano, Livia, Gauthier, Magali, Hong, Wesley, Kou, Ronghui, Li, Qinghao, Vinson, John, Kroll, Thomas, Sokaras, Dimosthenis, Sun, Cheng-Jun, Charles, Nenian, Maglia, Filippo, Jung, Roland, & Shao-Horn, Yang. Revealing Electronic Signatures of Lattice Oxygen Redox in Lithium Ruthenates and Implications for High-Energy Li-Ion Battery Material Designs. United States. https://doi.org/10.1021/acs.chemmater.9b01821
Yu, Yang, Karayaylali, Pinar, Nowak, Stanisław H., Giordano, Livia, Gauthier, Magali, Hong, Wesley, Kou, Ronghui, Li, Qinghao, Vinson, John, Kroll, Thomas, Sokaras, Dimosthenis, Sun, Cheng-Jun, Charles, Nenian, Maglia, Filippo, Jung, Roland, and Shao-Horn, Yang. Mon . "Revealing Electronic Signatures of Lattice Oxygen Redox in Lithium Ruthenates and Implications for High-Energy Li-Ion Battery Material Designs". United States. https://doi.org/10.1021/acs.chemmater.9b01821. https://www.osti.gov/servlets/purl/1576798.
@article{osti_1576798,
title = {Revealing Electronic Signatures of Lattice Oxygen Redox in Lithium Ruthenates and Implications for High-Energy Li-Ion Battery Material Designs},
author = {Yu, Yang and Karayaylali, Pinar and Nowak, Stanisław H. and Giordano, Livia and Gauthier, Magali and Hong, Wesley and Kou, Ronghui and Li, Qinghao and Vinson, John and Kroll, Thomas and Sokaras, Dimosthenis and Sun, Cheng-Jun and Charles, Nenian and Maglia, Filippo and Jung, Roland and Shao-Horn, Yang},
abstractNote = {Anion redox in lithium transition-metal oxides such as Li2RuO3 and Li2MnO3 has catalyzed intensive research efforts to find transition-metal oxides with anion redox that may boost the energy density of lithium-ion batteries. The physical origin of the observed anion redox remains debatable, and more direct experimental evidence is needed. In this work, we have shown electronic signatures of oxygen-oxygen coupling, direct evidence central to lattice oxygen redox (O2-/(O-2)(n-)), in charged Li2-xRuO3 after Ru oxidation (Ru-4(+)/Ru5+) upon first electron removal with lithium deintercalation. Experimental Ru L-3-edge high-energy-resolution fluorescence-detected X-ray absorption spectra (HERFD-XAS), supported by ab initio simulations, revealed that the increased intensity in the high-energy shoulder upon lithium deintercalation resulted from increased O-O coupling, inducing (O-O) sigma*-like states with pi overlap with Ru d-manifolds, in agreement with O K-edge XAS spectra. Experimental and simulated O K-edge X-ray emission spectra further supported this observation with the broadening of the oxygen nonbonding feature upon charging, also originated from (O-O) sigma* states. This lattice oxygen redox of Li2-xRuO3 was accompanied by a small amount of O-2 evolution in the first charge from differential electrochemistry mass spectrometry but diminished in the subsequent cycles, in agreement with the more reduced states of Ru in later cycles from Ru L-3-edge HERFD-XAS. These observations indicated that Ru redox contributed more to discharge capacities after the first cycle. This study has pinpointed the key spectral fingerprints related to lattice oxygen redox from a molecular level and constructed a transferrable framework to rationally interpret the spectroscopic features by combining advanced experiments and theoretical calculations to design materials for Li-ion batteries and electrocatalysis applications.},
doi = {10.1021/acs.chemmater.9b01821},
journal = {Chemistry of Materials},
number = 19,
volume = 31,
place = {United States},
year = {Mon Sep 09 00:00:00 EDT 2019},
month = {Mon Sep 09 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 39 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density
journal, June 1980


Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries
journal, January 1996


LixNiO2, a promising cathode for rechargeable lithium batteries
journal, March 1995


Oxygen Release and Its Effect on the Cycling Stability of LiNi x Mn y Co z O 2 (NMC) Cathode Materials for Li-Ion Batteries
journal, January 2017

  • Jung, Roland; Metzger, Michael; Maglia, Filippo
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.0021707jes

Orthorhombic LiMnO[sub 2] as a High Capacity Cathode for Li-Ion Cells
journal, January 1995

  • Koetschau, I.
  • Journal of The Electrochemical Society, Vol. 142, Issue 9
  • DOI: 10.1149/1.2048663

Lithium Intercalation into Layered LiMnO[sub 2]
journal, January 1997

  • Vitins, G.
  • Journal of The Electrochemical Society, Vol. 144, Issue 8
  • DOI: 10.1149/1.1837869

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Anionic redox processes for electrochemical devices
journal, January 2016

  • Grimaud, A.; Hong, W. T.; Shao-Horn, Y.
  • Nature Materials, Vol. 15, Issue 2
  • DOI: 10.1038/nmat4551

Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries
journal, April 2018


Estimation of Electronegativity Values of Elements in Different Valence States
journal, October 2006

  • Li, Keyan; Xue, Dongfeng
  • The Journal of Physical Chemistry A, Vol. 110, Issue 39
  • DOI: 10.1021/jp062886k

Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4
journal, December 2017


Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries
journal, February 2015

  • Sathiya, M.; Leriche, J. -B.; Salager, E.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7276

High Performance Li 2 Ru 1– y Mn y O 3 (0.2 ≤ y ≤ 0.8) Cathode Materials for Rechargeable Lithium-Ion Batteries: Their Understanding
journal, March 2013

  • Sathiya, M.; Ramesha, K.; Rousse, G.
  • Chemistry of Materials, Vol. 25, Issue 7
  • DOI: 10.1021/cm400193m

Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li[Ni0.2Li0.2Mn0.6]O2
journal, June 2006

  • Armstrong, A. Robert; Holzapfel, Michael; Novák, Petr
  • Journal of the American Chemical Society, Vol. 128, Issue 26
  • DOI: 10.1021/ja062027+

The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1−x)LiMn0.5Ni0.5O2 electrodes
journal, October 2004


Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: x Li 2 MnO 3 ·(1 − x )LiMn 0.333 Ni 0.333 Co 0.333 O 2 (0 ≤ x ≤ 0.7)
journal, October 2008

  • Johnson, Christopher S.; Li, Naichao; Lefief, Christina
  • Chemistry of Materials, Vol. 20, Issue 19
  • DOI: 10.1021/cm801245r

Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries
journal, March 2005

  • Thackeray, Michael M.; Johnson, Christopher S.; Vaughey, John T.
  • Journal of Materials Chemistry, Vol. 15, Issue 23, p. 2257-2267
  • DOI: 10.1039/b417616m

Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries
journal, January 2012

  • Thackeray, Michael M.; Wolverton, Christopher; Isaacs, Eric D.
  • Energy & Environmental Science, Vol. 5, Issue 7
  • DOI: 10.1039/c2ee21892e

Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells
journal, October 2016

  • Lee, Eungje; Blauwkamp, Joel; Castro, Fernando C.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 41
  • DOI: 10.1021/acsami.6b09073

First-Cycle Evolution of Local Structure in Electrochemically Activated Li 2 MnO 3
journal, December 2014

  • Croy, Jason R.; Park, Joong Sun; Dogan, Fulya
  • Chemistry of Materials, Vol. 26, Issue 24
  • DOI: 10.1021/cm5039792

Review of the U.S. Department of Energy’s “Deep Dive” Effort to Understand Voltage Fade in Li- and Mn-Rich Cathodes
journal, October 2015

  • Croy, Jason R.; Balasubramanian, Mahalingam; Gallagher, Kevin G.
  • Accounts of Chemical Research, Vol. 48, Issue 11
  • DOI: 10.1021/acs.accounts.5b00277

Synthesis of layered–layered 0.5Li2MnO3·0.5LiCoO2 nanocomposite electrode materials by the mechanochemical process and first principles study
journal, January 2012

  • Kim, Soo; Kim, Chunjoong; Jhon, Young-In
  • Journal of Materials Chemistry, Vol. 22, Issue 48
  • DOI: 10.1039/c2jm35654f

Electrochemical Activities in Li[sub 2]MnO[sub 3]
journal, January 2009

  • Yu, Denis Y. W.; Yanagida, Katsunori; Kato, Yoshio
  • Journal of The Electrochemical Society, Vol. 156, Issue 6
  • DOI: 10.1149/1.3110803

Effects of transition metal doping and surface treatment to improve the electrochemical performance of Li2MnO3
journal, February 2013


Mechanism of Electrochemical Activity in Li 2 MnO 3
journal, May 2003

  • Robertson, Alastair D.; Bruce, Peter G.
  • Chemistry of Materials, Vol. 15, Issue 10
  • DOI: 10.1021/cm030047u

Development and utility of manganese oxides as cathodes in lithium batteries
journal, March 2007


Cycle mechanism and electrochemical properties of lithium manganese oxide prepared using different Mn sources
journal, December 2008


Powder property and electrochemical characterization of Li2MnO3 material
journal, April 2007


Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
journal, March 2016

  • Luo, Kun; Roberts, Matthew R.; Hao, Rong
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2471

Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides
journal, December 2017


Origin of voltage decay in high-capacity layered oxide electrodes
journal, December 2014

  • Sathiya, M.; Abakumov, A. M.; Foix, D.
  • Nature Materials, Vol. 14, Issue 2
  • DOI: 10.1038/nmat4137

Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
journal, July 2013

  • Sathiya, M.; Rousse, G.; Ramesha, K.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3699

Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3
journal, February 2017

  • Pearce, Paul E.; Perez, Arnaud J.; Rousse, Gwenaelle
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4864

Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries
journal, December 2015


The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials
journal, May 2016

  • Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2524

Enabling the high capacity of lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic and cationic redox
journal, December 2017


Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides
journal, February 2019


Spectroscopic Signature of Oxidized Oxygen States in Peroxides
journal, October 2018

  • Zhuo, Zengqing; Pemmaraju, Chaitanya Das; Vinson, John
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 21
  • DOI: 10.1021/acs.jpclett.8b02757

Efficient implementation of core-excitation Bethe–Salpeter equation calculations
journal, December 2015


Effect of disorder on the dimer transition of the honeycomb-lattice compound Li 2 RuO 3
journal, February 2016

  • Jimenez-Segura, Marco-Polo; Ikeda, Atsutoshi; Yonezawa, Shingo
  • Physical Review B, Vol. 93, Issue 7
  • DOI: 10.1103/physrevb.93.075133

Lithium-Ion Batteries: Understanding the Stability for Li-Rich Layered Oxide Li 2 RuO 3 Cathode (Adv. Funct. Mater. 9/2016)
journal, March 2016

  • Li, Biao; Shao, Ruiwen; Yan, Huijun
  • Advanced Functional Materials, Vol. 26, Issue 9
  • DOI: 10.1002/adfm.201670054

X-ray absorption spectra of ruthenium L edges in hexaammineruthenium trichloride
journal, April 1983

  • Sham, T. K.
  • Journal of the American Chemical Society, Vol. 105, Issue 8
  • DOI: 10.1021/ja00346a028

Understanding the Electronic Structure of 4d Metal Complexes: From Molecular Spinors to L-Edge Spectra of a di-Ru Catalyst
journal, October 2011

  • Alperovich, Igor; Smolentsev, Grigory; Moonshiram, Dooshaye
  • Journal of the American Chemical Society, Vol. 133, Issue 39
  • DOI: 10.1021/ja207409q

Ligand field strengths and oxidation states from manganese L-edge spectroscopy
journal, October 1991

  • Cramer, S. P.; DeGroot, F. M. F.; Ma, Y.
  • Journal of the American Chemical Society, Vol. 113, Issue 21
  • DOI: 10.1021/ja00021a018

Proton Ion Exchange Reaction in Li 3 IrO 4 : A Way to New H 3+ x IrO 4 Phases Electrochemically Active in Both Aqueous and Nonaqueous Electrolytes
journal, January 2018

  • Perez, Arnaud J.; Beer, Robin; Lin, Zifeng
  • Advanced Energy Materials, Vol. 8, Issue 13
  • DOI: 10.1002/aenm.201702855

Oxygen Contribution on Li-Ion Intercalation−Deintercalation in LiCoO 2 Investigated by O K-Edge and Co L-Edge X-ray Absorption Spectroscopy
journal, March 2002

  • Yoon, Won-Sub; Kim, Kwang-Bum; Kim, Min-Gyu
  • The Journal of Physical Chemistry B, Vol. 106, Issue 10
  • DOI: 10.1021/jp013735e

Changes in the Electronic Structure of Chemically Deintercalated LiCoO[sub 2]
journal, January 1999

  • Montoro, L. A.
  • Electrochemical and Solid-State Letters, Vol. 3, Issue 9
  • DOI: 10.1149/1.1391162

Superoxide Ion: Generation and Chemical Implications
journal, February 2016


Probing LaMO 3 Metal and Oxygen Partial Density of States Using X-ray Emission, Absorption, and Photoelectron Spectroscopy
journal, January 2015

  • Hong, Wesley T.; Stoerzinger, Kelsey A.; Moritz, Brian
  • The Journal of Physical Chemistry C, Vol. 119, Issue 4
  • DOI: 10.1021/jp511931y

Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations
journal, August 1993

  • Dronskowski, Richard; Bloechl, Peter E.
  • The Journal of Physical Chemistry, Vol. 97, Issue 33
  • DOI: 10.1021/j100135a014

Crystal Orbital Hamilton Population (COHP) Analysis As Projected from Plane-Wave Basis Sets
journal, June 2011

  • Deringer, Volker L.; Tchougréeff, Andrei L.; Dronskowski, Richard
  • The Journal of Physical Chemistry A, Vol. 115, Issue 21
  • DOI: 10.1021/jp202489s

Redox Processes of Manganese Oxide in Catalyzing Oxygen Evolution and Reduction: An in Situ Soft X-ray Absorption Spectroscopy Study
journal, August 2017

  • Risch, Marcel; Stoerzinger, Kelsey A.; Han, Binghong
  • The Journal of Physical Chemistry C, Vol. 121, Issue 33
  • DOI: 10.1021/acs.jpcc.7b05592

Residual Lithium Carbonate Predominantly Accounts for First Cycle CO 2 and CO Outgassing of Li-Stoichiometric and Li-Rich Layered Transition-Metal Oxides
journal, November 2017

  • Renfrew, Sara E.; McCloskey, Bryan D.
  • Journal of the American Chemical Society, Vol. 139, Issue 49
  • DOI: 10.1021/jacs.7b08461

Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen
journal, April 2018

  • Mahne, Nika; Renfrew, Sara E.; McCloskey, Bryan D.
  • Angewandte Chemie International Edition, Vol. 57, Issue 19
  • DOI: 10.1002/anie.201802277

Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries
journal, October 2018


Probing Electrochemically Induced Structural Evolution and Oxygen Redox Reactions in Layered Lithium Iridate
journal, March 2019


Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries
journal, December 2016

  • Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13814

High-capacity electrode materials for rechargeable lithium batteries: Li 3 NbO 4 -based system with cation-disordered rocksalt structure
journal, June 2015

  • Yabuuchi, Naoaki; Takeuchi, Mitsue; Nakayama, Masanobu
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 25
  • DOI: 10.1073/pnas.1504901112

Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry
journal, May 2011

  • McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 10, p. 1161-1166
  • DOI: 10.1021/jz200352v

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502