skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on October 14, 2020

Title: A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser

Abstract

We demonstrate the translation of a low-cost, non-precious metal cobalt phosphide (CoP) catalyst from 1 cm 2 lab-scale experiments to a commercial-scale 86 cm 2 polymer electrolyte membrane (PEM) electrolyser. A two-step bulk synthesis was adopted to produce CoP on a high-surface-area carbon support that was readily integrated into an industrial PEM electrolyser fabrication process. The performance of the CoP was compared head to head with a platinum-based PEM under the same operating conditions (400 psi, 50 °C). CoP was found to be active and stable, operating at 1.86 A cm –2 for >1,700 h of continuous hydrogen production while providing substantial material cost savings relative to platinum. In conclusion, this work illustrates a potential pathway for non-precious hydrogen evolution catalysts developed in past decades to translate to commercial applications.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [2];  [2];  [3];  [1];  [1];  [2]; ORCiD logo [1]
  1. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  2. Nel Hydrogen/Proton OnSite, Wallingford, CT (United States)
  3. Nel Hydrogen/Proton OnSite, Wallingford, CT (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Chemical Sciences, Geosciences & Biosciences Division
Contributing Org.:
Nel Hydrogen/Proton OnSite, Wallingford, CT, USA
OSTI Identifier:
1576567
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Nature Nanotechnology
Additional Journal Information:
Journal Volume: 14; Journal Issue: 11; Journal ID: ISSN 1748-3387
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
30 DIRECT ENERGY CONVERSION

Citation Formats

King, Laurie A., Hubert, McKenzie A., Capuano, Christopher, Manco, Judith, Danilovic, Nemanja, Valle, Eduardo, Hellstern, Thomas R., Ayers, Katherine, and Jaramillo, Thomas F. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. United States: N. p., 2019. Web. doi:10.1038/s41565-019-0550-7.
King, Laurie A., Hubert, McKenzie A., Capuano, Christopher, Manco, Judith, Danilovic, Nemanja, Valle, Eduardo, Hellstern, Thomas R., Ayers, Katherine, & Jaramillo, Thomas F. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. United States. doi:10.1038/s41565-019-0550-7.
King, Laurie A., Hubert, McKenzie A., Capuano, Christopher, Manco, Judith, Danilovic, Nemanja, Valle, Eduardo, Hellstern, Thomas R., Ayers, Katherine, and Jaramillo, Thomas F. Mon . "A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser". United States. doi:10.1038/s41565-019-0550-7.
@article{osti_1576567,
title = {A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser},
author = {King, Laurie A. and Hubert, McKenzie A. and Capuano, Christopher and Manco, Judith and Danilovic, Nemanja and Valle, Eduardo and Hellstern, Thomas R. and Ayers, Katherine and Jaramillo, Thomas F.},
abstractNote = {We demonstrate the translation of a low-cost, non-precious metal cobalt phosphide (CoP) catalyst from 1 cm2 lab-scale experiments to a commercial-scale 86 cm2 polymer electrolyte membrane (PEM) electrolyser. A two-step bulk synthesis was adopted to produce CoP on a high-surface-area carbon support that was readily integrated into an industrial PEM electrolyser fabrication process. The performance of the CoP was compared head to head with a platinum-based PEM under the same operating conditions (400 psi, 50 °C). CoP was found to be active and stable, operating at 1.86 A cm–2 for >1,700 h of continuous hydrogen production while providing substantial material cost savings relative to platinum. In conclusion, this work illustrates a potential pathway for non-precious hydrogen evolution catalysts developed in past decades to translate to commercial applications.},
doi = {10.1038/s41565-019-0550-7},
journal = {Nature Nanotechnology},
number = 11,
volume = 14,
place = {United States},
year = {2019},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on October 14, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy
journal, January 2012

  • Vesborg, Peter C. K.; Jaramillo, Thomas F.
  • RSC Advances, Vol. 2, Issue 21
  • DOI: 10.1039/c2ra20839c

Biomimetic Hydrogen Evolution:  MoS 2 Nanoparticles as Catalyst for Hydrogen Evolution
journal, April 2005

  • Hinnemann, Berit; Moses, Poul Georg; Bonde, Jacob
  • Journal of the American Chemical Society, Vol. 127, Issue 15
  • DOI: 10.1021/ja0504690

Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts
journal, July 2007

  • Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.
  • Science, Vol. 317, Issue 5834, p. 100-102
  • DOI: 10.1126/science.1141483

Synthesis, Characterization, and Properties of Metal Phosphide Catalysts for the Hydrogen-Evolution Reaction
journal, August 2016


Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
journal, January 2016

  • Shi, Yanmei; Zhang, Bin
  • Chemical Society Reviews, Vol. 45, Issue 6, p. 1529-1541
  • DOI: 10.1039/C5CS00434A

Molybdenum Phosphosulfide: An Active, Acid-Stable, Earth-Abundant Catalyst for the Hydrogen Evolution Reaction
journal, October 2014

  • Kibsgaard, Jakob; Jaramillo, Thomas F.
  • Angewandte Chemie International Edition, Vol. 53, Issue 52
  • DOI: 10.1002/anie.201408222

Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices
journal, March 2015

  • McCrory, Charles C. L.; Jung, Suho; Ferrer, Ivonne M.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/ja510442p

MoS2-based materials as alternative cathode catalyst for PEM electrolysis
journal, December 2014

  • Corrales-Sánchez, Tachmajal; Ampurdanés, Jordi; Urakawa, Atsushi
  • International Journal of Hydrogen Energy, Vol. 39, Issue 35
  • DOI: 10.1016/j.ijhydene.2014.08.078

Polymer Electrolyte Membrane Electrolyzers Utilizing Non-precious Mo-based Hydrogen Evolution Catalysts
journal, September 2015

  • Ng, Jia Wei Desmond; Hellstern, Thomas R.; Kibsgaard, Jakob
  • ChemSusChem, Vol. 8, Issue 20
  • DOI: 10.1002/cssc.201500334

Low-Cost Nanostructured Iron Sulfide Electrocatalysts for PEM Water Electrolysis
journal, March 2016

  • Giovanni, Carlo Di; Reyes-Carmona, Álvaro; Coursier, Anaïs
  • ACS Catalysis, Vol. 6, Issue 4
  • DOI: 10.1021/acscatal.5b02443

Earth-Abundant Electrocatalysts in Proton Exchange Membrane Electrolyzers
journal, December 2018

  • Sun, Xinwei; Xu, Kaiqi; Fleischer, Christian
  • Catalysts, Vol. 8, Issue 12
  • DOI: 10.3390/catal8120657

Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review
journal, November 2016

  • Anantharaj, Sengeni; Ede, Sivasankara Rao; Sakthikumar, Kuppan
  • ACS Catalysis, Vol. 6, Issue 12
  • DOI: 10.1021/acscatal.6b02479

Highly Active Electrocatalysis of the Hydrogen Evolution Reaction by Cobalt Phosphide Nanoparticles
journal, April 2014

  • Popczun, Eric J.; Read, Carlos G.; Roske, Christopher W.
  • Angewandte Chemie International Edition, Vol. 53, Issue 21
  • DOI: 10.1002/anie.201402646

Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends
journal, January 2015

  • Kibsgaard, Jakob; Tsai, Charlie; Chan, Karen
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE02179K

Engineering Cobalt Phosphide (CoP) Thin Film Catalysts for Enhanced Hydrogen Evolution Activity on Silicon Photocathodes
journal, December 2015

  • Hellstern, Thomas R.; Benck, Jesse D.; Kibsgaard, Jakob
  • Advanced Energy Materials, Vol. 6, Issue 4
  • DOI: 10.1002/aenm.201501758

Operando Spectroscopic Analysis of CoP Films Electrocatalyzing the Hydrogen-Evolution Reaction
journal, September 2017

  • Saadi, Fadl H.; Carim, Azhar I.; Drisdell, Walter S.
  • Journal of the American Chemical Society, Vol. 139, Issue 37
  • DOI: 10.1021/jacs.7b07606

Interconnected urchin-like cobalt phosphide microspheres film for highly efficient electrochemical hydrogen evolution in both acidic and basic media
journal, January 2016

  • Zhou, Dan; He, Liangbo; Zhu, Wenxin
  • Journal of Materials Chemistry A, Vol. 4, Issue 26
  • DOI: 10.1039/C6TA03628G

A comparison of rotating disc electrode, floating electrode technique and membrane electrode assembly measurements for catalyst testing
journal, July 2018


Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction
journal, January 2016

  • Alia, Shaun M.; Rasimick, Brian; Ngo, Chilan
  • Journal of The Electrochemical Society, Vol. 163, Issue 11
  • DOI: 10.1149/2.0151611jes

Iridium-Based Nanowires as Highly Active, Oxygen Evolution Reaction Electrocatalysts
journal, January 2018


Impact of Intermittent Operation on Lifetime and Performance of a PEM Water Electrolyzer
journal, January 2019

  • Weiß, A.; Siebel, A.; Bernt, M.
  • Journal of The Electrochemical Society, Vol. 166, Issue 8
  • DOI: 10.1149/2.0421908jes

Stability and Activity of Non‐Noble‐Metal‐Based Catalysts Toward the Hydrogen Evolution Reaction
journal, July 2017

  • Ledendecker, Marc; Mondschein, Jared S.; Kasian, Olga
  • Angewandte Chemie, Vol. 129, Issue 33
  • DOI: 10.1002/ange.201704021

Critical Review—Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development
journal, January 2017

  • Babic, Ugljesa; Suermann, Michel; Büchi, Felix N.
  • Journal of The Electrochemical Society, Vol. 164, Issue 4
  • DOI: 10.1149/2.1441704jes