DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum

Abstract

The robust lignocellulose-solubilizing activity of C. thermocellum makes it a top candidate for consolidated bioprocessing for biofuel production. Genetic techniques for C. thermocellum have lagged behind model organisms thus limiting attempts to improve biofuel production. To improve our ability to engineer C. thermocellum, we characterized a native Type I-B and heterologous Type II Clustered Regularly-Interspaced Short Palindromic Repeat (CRISPR)/cas (CRISPR associated) systems. We repurposed the native Type I-B system for genome editing. We tested three thermophilic Cas9 variants (Type II) and found that GeoCas9, isolated from Geobacillus stearothermophilus, is active in C. thermocellum. We employed CRISPR-mediated homology directed repair to introduce a nonsense mutation into pyrF. For both editing systems, homologous recombination between the repair template and the genome appeared to be the limiting step. To overcome this limitation, we tested three novel thermophilic recombinases and demonstrated that exo/beta homologs, isolated from Acidithiobacillus caldus, are functional in C. thermocellum. For the Type I-B system an engineered strain, termed LL1586, yielded 40% genome editing efficiency at the pyrF locus and when recombineering machinery was expressed this increased to 71%. For the Type II GeoCas9 system, 12.5% genome editing efficiency was observed and when recombineering machinery was expressed, this increased to 94%.more » By combining the thermophilic CRISPR system (either Type I-B or Type II) with the recombinases, we developed a new tool that allows for efficient CRISPR editing. We are now poised to enable CRISPR technologies to better engineer C. thermocellum for both increased lignocellulose degradation and biofuel production.« less

Authors:
; ; ; ; ; ; ;
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1576060
Alternate Identifier(s):
OSTI ID: 1580488
Report Number(s):
NREL/JA-2700-74649
Journal ID: ISSN 2214-0301; S2214030119300239; e00116; PII: S2214030119300239
Grant/Contract Number:  
AC02–05CH11231; AC36-08GO28308
Resource Type:
Published Article
Journal Name:
Metabolic Engineering Communications
Additional Journal Information:
Journal Name: Metabolic Engineering Communications Journal Volume: 10 Journal Issue: C; Journal ID: ISSN 2214-0301
Publisher:
Elsevier
Country of Publication:
Netherlands
Language:
English
Subject:
09 BIOMASS FUELS; CRISPR; type I-B; Cas9; Clostridium thermocellum; thermophilic recombineering

Citation Formats

Walker, Julie E., Lanahan, Anthony A., Zheng, Tianyong, Toruno, Camilo, Lynd, Lee R., Cameron, Jeffrey C., Olson, Daniel G., and Eckert, Carrie A. Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum. Netherlands: N. p., 2020. Web. doi:10.1016/j.mec.2019.e00116.
Walker, Julie E., Lanahan, Anthony A., Zheng, Tianyong, Toruno, Camilo, Lynd, Lee R., Cameron, Jeffrey C., Olson, Daniel G., & Eckert, Carrie A. Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum. Netherlands. https://doi.org/10.1016/j.mec.2019.e00116
Walker, Julie E., Lanahan, Anthony A., Zheng, Tianyong, Toruno, Camilo, Lynd, Lee R., Cameron, Jeffrey C., Olson, Daniel G., and Eckert, Carrie A. Mon . "Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum". Netherlands. https://doi.org/10.1016/j.mec.2019.e00116.
@article{osti_1576060,
title = {Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum},
author = {Walker, Julie E. and Lanahan, Anthony A. and Zheng, Tianyong and Toruno, Camilo and Lynd, Lee R. and Cameron, Jeffrey C. and Olson, Daniel G. and Eckert, Carrie A.},
abstractNote = {The robust lignocellulose-solubilizing activity of C. thermocellum makes it a top candidate for consolidated bioprocessing for biofuel production. Genetic techniques for C. thermocellum have lagged behind model organisms thus limiting attempts to improve biofuel production. To improve our ability to engineer C. thermocellum, we characterized a native Type I-B and heterologous Type II Clustered Regularly-Interspaced Short Palindromic Repeat (CRISPR)/cas (CRISPR associated) systems. We repurposed the native Type I-B system for genome editing. We tested three thermophilic Cas9 variants (Type II) and found that GeoCas9, isolated from Geobacillus stearothermophilus, is active in C. thermocellum. We employed CRISPR-mediated homology directed repair to introduce a nonsense mutation into pyrF. For both editing systems, homologous recombination between the repair template and the genome appeared to be the limiting step. To overcome this limitation, we tested three novel thermophilic recombinases and demonstrated that exo/beta homologs, isolated from Acidithiobacillus caldus, are functional in C. thermocellum. For the Type I-B system an engineered strain, termed LL1586, yielded 40% genome editing efficiency at the pyrF locus and when recombineering machinery was expressed this increased to 71%. For the Type II GeoCas9 system, 12.5% genome editing efficiency was observed and when recombineering machinery was expressed, this increased to 94%. By combining the thermophilic CRISPR system (either Type I-B or Type II) with the recombinases, we developed a new tool that allows for efficient CRISPR editing. We are now poised to enable CRISPR technologies to better engineer C. thermocellum for both increased lignocellulose degradation and biofuel production.},
doi = {10.1016/j.mec.2019.e00116},
journal = {Metabolic Engineering Communications},
number = C,
volume = 10,
place = {Netherlands},
year = {Mon Jun 01 00:00:00 EDT 2020},
month = {Mon Jun 01 00:00:00 EDT 2020}
}

Works referenced in this record:

Transformation of Clostridium Thermocellum by Electroporation
book, January 2012


Next Generation Prokaryotic Engineering: The CRISPR-Cas Toolkit
journal, July 2016


Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression
journal, February 2013


Northern, Morphological, and Fermentation Analysis of spo0A Inactivation and Overexpression in Clostridium acetobutylicum ATCC 824
journal, July 2002


Genome engineering of Clostridium difficile using the CRISPR-Cas9 system
journal, October 2018


CRISPR/Cas9-Based Efficient Genome Editing in Clostridium ljungdahlii , an Autotrophic Gas-Fermenting Bacterium
journal, June 2016


An update on the human and animal enteric pathogen Clostridium perfringens
journal, August 2018


The CRISPR tool kit for genome editing and beyond
journal, May 2018


Harnessing Type I and Type III CRISPR-Cas systems for genome editing
journal, October 2015

  • Li, Yingjun; Pan, Saifu; Zhang, Yan
  • Nucleic Acids Research, Vol. 44, Issue 4
  • DOI: 10.1093/nar/gkv1044

A thermostable Cas9 with increased lifetime in human plasma
journal, November 2017

  • Harrington, Lucas B.; Paez-Espino, David; Staahl, Brett T.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/s41467-017-01408-4

Implementation of the CRISPR-Cas9 system in fission yeast
journal, October 2014

  • Jacobs, Jake Z.; Ciccaglione, Keith M.; Tournier, Vincent
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6344

The Impact of DNA Topology and Guide Length on Target Selection by a Cytosine-Specific Cas9
journal, March 2017

  • Tsui, Tsz Kin Martin; Hand, Travis H.; Duboy, Emily C.
  • ACS Synthetic Biology, Vol. 6, Issue 6
  • DOI: 10.1021/acssynbio.7b00050

Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities
journal, February 2016


Consolidated bioprocessing of cellulosic biomass: an update
journal, October 2005

  • Lynd, Lee R.; van Zyl, Willem H.; McBride, John E.
  • Current Opinion in Biotechnology, Vol. 16, Issue 5, p. 577-583
  • DOI: 10.1016/j.copbio.2005.08.009

Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes
journal, August 2008

  • Brouns, S. J. J.; Jore, M. M.; Lundgren, M.
  • Science, Vol. 321, Issue 5891, p. 960-964
  • DOI: 10.1126/science.1159689

Using an Endogenous CRISPR-Cas System for Genome Editing in the Human Pathogen Clostridium difficile
journal, August 2019

  • Maikova, Anna; Kreis, Victor; Boutserin, Anaïs
  • Applied and Environmental Microbiology, Vol. 85, Issue 20
  • DOI: 10.1128/AEM.01416-19

Short motif sequences determine the targets of the prokaryotic CRISPR defence system
journal, March 2009

  • Mojica, F. J. M.; Díez-Villaseñor, C.; García-Martínez, J.
  • Microbiology, Vol. 155, Issue 3, p. 733-740
  • DOI: 10.1099/mic.0.023960-0

Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium
journal, May 2016

  • Pyne, Michael E.; Bruder, Mark R.; Moo-Young, Murray
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep25666

Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System
journal, March 2017

  • Wang, Shaohua; Dong, Sheng; Wang, Pixiang
  • Applied and Environmental Microbiology, Vol. 83, Issue 10
  • DOI: 10.1128/AEM.00233-17

Physiological roles of pyruvate ferredoxin oxidoreductase and pyruvate formate-lyase in Thermoanaerobacterium saccharolyticum JW/SL-YS485
journal, September 2015

  • Zhou, Jilai; Olson, Daniel G.; Lanahan, Anthony A.
  • Biotechnology for Biofuels, Vol. 8, Issue 1
  • DOI: 10.1186/s13068-015-0304-1

Generation of a fully erythromycin-sensitive strain of Clostridioides difficile using a novel CRISPR-Cas9 genome editing system
journal, May 2019


CRISPR–Cas9 D10A nickase‐assisted base editing in the solvent producer Clostridium beijerinckii
journal, February 2019

  • Li, Qi; Seys, François M.; Minton, Nigel P.
  • Biotechnology and Bioengineering, Vol. 116, Issue 6
  • DOI: 10.1002/bit.26949

Recent progress in consolidated bioprocessing
journal, June 2012

  • Olson, Daniel G.; McBride, John E.; Joe Shaw, A.
  • Current Opinion in Biotechnology, Vol. 23, Issue 3, p. 396-405
  • DOI: 10.1016/j.copbio.2011.11.026

Genome editing of Clostridium autoethanogenum using CRISPR/Cas9
journal, October 2016

  • Nagaraju, Shilpa; Davies, Naomi Kathleen; Walker, David Jeffrey Fraser
  • Biotechnology for Biofuels, Vol. 9, Issue 1
  • DOI: 10.1186/s13068-016-0638-3

RNA-programmed genome editing in human cells
journal, January 2013

  • Jinek, Martin; East, Alexandra; Cheng, Aaron
  • eLife, Vol. 2, Article No. e00471
  • DOI: 10.7554/eLife.00471

High-Level dCas9 Expression Induces Abnormal Cell Morphology in Escherichia coli
journal, March 2018


Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon
journal, November 2017


Development of pyrF-Based Genetic System for Targeted Gene Deletion in Clostridium thermocellum and Creation of a pta Mutant
journal, August 2010

  • Tripathi, S. A.; Olson, D. G.; Argyros, D. A.
  • Applied and Environmental Microbiology, Vol. 76, Issue 19, p. 6591-6599
  • DOI: 10.1128/AEM.01484-10

CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
journal, March 2011

  • Deltcheva, Elitza; Chylinski, Krzysztof; Sharma, Cynthia M.
  • Nature, Vol. 471, Issue 7340
  • DOI: 10.1038/nature09886

Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
journal, September 2012

  • Gasiunas, G.; Barrangou, R.; Horvath, P.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39, p. E2579-E2586
  • DOI: 10.1073/pnas.1208507109

Programmable control of bacterial gene expression with the combined CRISPR and antisense RNA system
journal, February 2016

  • Lee, Young Je; Hoynes-O'Connor, Allison; Leong, Matthew C.
  • Nucleic Acids Research, Vol. 44, Issue 5
  • DOI: 10.1093/nar/gkw056

Developing Riboswitch-Mediated Gene Regulatory Controls in Thermophilic Bacteria
journal, April 2019

  • Marcano-Velazquez, Joan G.; Lo, Jonathan; Nag, Ambarish
  • ACS Synthetic Biology, Vol. 8, Issue 4
  • DOI: 10.1021/acssynbio.8b00487

Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity
journal, May 2014

  • Nuñez, James K.; Kranzusch, Philip J.; Noeske, Jonas
  • Nature Structural & Molecular Biology, Vol. 21, Issue 6
  • DOI: 10.1038/nsmb.2820

A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity
journal, June 2012


Microbial Cellulose Utilization: Fundamentals and Biotechnology
journal, September 2002

  • Lynd, L. R.; Weimer, P. J.; van Zyl, W. H.
  • Microbiology and Molecular Biology Reviews, Vol. 66, Issue 3, p. 506-577
  • DOI: 10.1128/MMBR.66.3.506-577.2002

A functional recT gene for recombineering of Clostridium
journal, March 2014


Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii
journal, June 2014

  • Chung, D.; Cha, M.; Guss, A. M.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 24, p. 8931-8936
  • DOI: 10.1073/pnas.1402210111

Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum
journal, November 2017


Fragmentation of the CRISPR-Cas Type I-B signature protein Cas8b
journal, November 2017

  • Richter, Hagen; Rompf, Judith; Wiegel, Julia
  • Biochimica et Biophysica Acta (BBA) - General Subjects, Vol. 1861, Issue 11
  • DOI: 10.1016/j.bbagen.2017.02.026

Identifying promoters for gene expression in Clostridium thermocellum
journal, December 2015


Basic local alignment search tool
journal, October 1990

  • Altschul, Stephen F.; Gish, Warren; Miller, Webb
  • Journal of Molecular Biology, Vol. 215, Issue 3, p. 403-410
  • DOI: 10.1016/S0022-2836(05)80360-2

Cutting it close: CRISPR-associated endoribonuclease structure and function
journal, January 2015


Computational design and characterization of a temperature-sensitive plasmid replicon for gram positive thermophiles
journal, December 2012

  • Olson, Daniel G.; Lynd, Lee R.
  • Journal of Biological Engineering, Vol. 6, Issue 1
  • DOI: 10.1186/1754-1611-6-5

Metabolic engineering of Clostridium thermocellum for n-butanol production from cellulose
journal, July 2019

  • Tian, Liang; Conway, Peter M.; Cervenka, Nicholas D.
  • Biotechnology for Biofuels, Vol. 12, Issue 1
  • DOI: 10.1186/s13068-019-1524-6

One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering
journal, May 2013


Using CRISPR-Cas9-mediated genome editing to generate C. difficile mutants defective in selenoproteins synthesis
journal, November 2017

  • McAllister, Kathleen N.; Bouillaut, Laurent; Kahn, Jennifer N.
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/s41598-017-15236-5

Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis
journal, August 2012

  • Richter, Hagen; Zoephel, Judith; Schermuly, Jeanette
  • Nucleic Acids Research, Vol. 40, Issue 19, p. 9887-9896
  • DOI: 10.1093/nar/gks737

Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system
journal, April 2015


A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum
journal, September 2017

  • Wasels, François; Jean-Marie, Jennifer; Collas, Florent
  • Journal of Microbiological Methods, Vol. 140
  • DOI: 10.1016/j.mimet.2017.06.010

RNA-Guided Human Genome Engineering via Cas9
journal, January 2013


A novel two-step genome editing strategy with CRISPR-Cas9 provides new insights into telomerase action and TERT gene expression
journal, November 2015


Structure basis for RNA-guided DNA degradation by Cascade and Cas3
journal, June 2018


CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii
journal, June 2016


Multiplex Genome Engineering Using CRISPR/Cas Systems
journal, January 2013


Efficient genome editing in zebrafish using a CRISPR-Cas system
journal, January 2013

  • Hwang, Woong Y.; Fu, Yanfang; Reyon, Deepak
  • Nature Biotechnology, Vol. 31, Issue 3, p. 227-229
  • DOI: 10.1038/nbt.2501

A Targetron System for Gene Targeting in Thermophiles and Its Application in Clostridium thermocellum
journal, July 2013


Nonhomologous End-Joining in Bacteria: A Microbial Perspective
journal, October 2007


CO2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion
journal, September 2016

  • Jones, Shawn W.; Fast, Alan G.; Carlson, Ellinor D.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12800

CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum
journal, July 2017


RNA-guided editing of bacterial genomes using CRISPR-Cas systems
journal, January 2013

  • Jiang, Wenyan; Bikard, David; Cox, David
  • Nature Biotechnology, Vol. 31, Issue 3, p. 233-239
  • DOI: 10.1038/nbt.2508

Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes
journal, December 2008


Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system: Cas3 nuclease/helicase
journal, February 2011

  • Sinkunas, Tomas; Gasiunas, Giedrius; Fremaux, Christophe
  • The EMBO Journal, Vol. 30, Issue 7
  • DOI: 10.1038/emboj.2011.41

Characterizing a thermostable Cas9 for bacterial genome editing and silencing
journal, November 2017

  • Mougiakos, Ioannis; Mohanraju, Prarthana; Bosma, Elleke F.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/s41467-017-01591-4

Efficient Genome Editing in Clostridium cellulolyticum via CRISPR-Cas9 Nickase
journal, April 2015

  • Xu, Tao; Li, Yongchao; Shi, Zhou
  • Applied and Environmental Microbiology, Vol. 81, Issue 13
  • DOI: 10.1128/AEM.00873-15