skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microfluidic electrochemical cell for in situ structural characterization of amorphous thin-film catalysts using high-energy X-ray scattering

Abstract

Porous, high-surface-area electrode architectures are described that allow structural characterization of interfacial amorphous thin films with high spatial resolution under device-relevant functional electrochemical conditions using high-energy X-ray (>50 keV) scattering and pair distribution function (PDF) analysis. Porous electrodes were fabricated from glass-capillary array membranes coated with conformal transparent conductive oxide layers, consisting of either a 40 nm–50 nm crystalline indium tin oxide or a 100 nm–150 nm-thick amorphous indium zinc oxide deposited by atomic layer deposition. These porous electrodes solve the problem of insufficient interaction volumes for catalyst thin films in two-dimensional working electrode designs and provide sufficiently low scattering backgrounds to enable high-resolution signal collection from interfacial thin-film catalysts. For example, PDF measurements were readily obtained with 0.2 Å spatial resolution for amorphous cobalt oxide films with thicknesses down to 60 nm when deposited on a porous electrode with 40 µm-diameter pores. This level of resolution resolves the cobaltate domain size and structure, the presence of defect sites assigned to the domain edges, and the changes in fine structure upon redox state change that are relevant to quantitative structure–function modeling. The results suggest the opportunity to leverage the porous, electrode architectures for PDF analysis of nanometre-scale surface-supported molecular catalysts.more » In addition, a compact 3D-printed electrochemical cell in a three-electrode configuration is described which is designed to allow for simultaneous X-ray transmission and electrolyte flow through the porous working electrode.« less

Authors:
ORCiD logo [1];  [2];  [2]; ORCiD logo [3];  [4];  [5];  [6]; ORCiD logo [7]
  1. Northwestern Univ., Evanston, IL (United States). Argonne Northwestern Solar Energy Research (ANSER) Center and Northwestern-Argonne Inst. of Science and Engineering; Argonne National Lab. (ANL), Lemont, IL (United States). Materials Science Div. and Chemical Sciences and Engineering Div.
  2. Seoul National Univ., Gwanak-gu (South Korea). Nano Fabrication Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering
  3. Argonne National Lab. (ANL), Lemont, IL (United States). Materials Science Div.; Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering
  4. Argonne National Lab. (ANL), Lemont, IL (United States). Materials Science Div.; Korea Institute of Science and Technology (KIST), Seoul (Korea)
  5. Argonne National Lab. (ANL), Lemont, IL (United States). X-ray Science Div.
  6. Argonne National Lab. (ANL), Lemont, IL (United States)
  7. Argonne National Lab. (ANL), Lemont, IL (United States). Chemical Sciences and Engineering Div.
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1575070
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Synchrotron Radiation (Online)
Additional Journal Information:
Journal Name: Journal of Synchrotron Radiation (Online); Journal Volume: 26; Journal Issue: 5; Journal ID: ISSN 1600-5775
Publisher:
International Union of Crystallography
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; atomic layer deposition; catalysts; electrochemistry; electrode architectures; high-energy X-ray scattering; pair distribution functions; ultra-thin films

Citation Formats

Kwon, Gihan, Cho, Yeong -Ho, Kim, Ki -Bum, Emery, Jonathan D., Kim, In Soo, Zhang, Xiaoyi, Martinson, Alex B. F., and Tiede, Davd M. Microfluidic electrochemical cell for in situ structural characterization of amorphous thin-film catalysts using high-energy X-ray scattering. United States: N. p., 2019. Web. doi:10.1107/s1600577519007240.
Kwon, Gihan, Cho, Yeong -Ho, Kim, Ki -Bum, Emery, Jonathan D., Kim, In Soo, Zhang, Xiaoyi, Martinson, Alex B. F., & Tiede, Davd M. Microfluidic electrochemical cell for in situ structural characterization of amorphous thin-film catalysts using high-energy X-ray scattering. United States. doi:10.1107/s1600577519007240.
Kwon, Gihan, Cho, Yeong -Ho, Kim, Ki -Bum, Emery, Jonathan D., Kim, In Soo, Zhang, Xiaoyi, Martinson, Alex B. F., and Tiede, Davd M. Fri . "Microfluidic electrochemical cell for in situ structural characterization of amorphous thin-film catalysts using high-energy X-ray scattering". United States. doi:10.1107/s1600577519007240. https://www.osti.gov/servlets/purl/1575070.
@article{osti_1575070,
title = {Microfluidic electrochemical cell for in situ structural characterization of amorphous thin-film catalysts using high-energy X-ray scattering},
author = {Kwon, Gihan and Cho, Yeong -Ho and Kim, Ki -Bum and Emery, Jonathan D. and Kim, In Soo and Zhang, Xiaoyi and Martinson, Alex B. F. and Tiede, Davd M.},
abstractNote = {Porous, high-surface-area electrode architectures are described that allow structural characterization of interfacial amorphous thin films with high spatial resolution under device-relevant functional electrochemical conditions using high-energy X-ray (>50 keV) scattering and pair distribution function (PDF) analysis. Porous electrodes were fabricated from glass-capillary array membranes coated with conformal transparent conductive oxide layers, consisting of either a 40 nm–50 nm crystalline indium tin oxide or a 100 nm–150 nm-thick amorphous indium zinc oxide deposited by atomic layer deposition. These porous electrodes solve the problem of insufficient interaction volumes for catalyst thin films in two-dimensional working electrode designs and provide sufficiently low scattering backgrounds to enable high-resolution signal collection from interfacial thin-film catalysts. For example, PDF measurements were readily obtained with 0.2 Å spatial resolution for amorphous cobalt oxide films with thicknesses down to 60 nm when deposited on a porous electrode with 40 µm-diameter pores. This level of resolution resolves the cobaltate domain size and structure, the presence of defect sites assigned to the domain edges, and the changes in fine structure upon redox state change that are relevant to quantitative structure–function modeling. The results suggest the opportunity to leverage the porous, electrode architectures for PDF analysis of nanometre-scale surface-supported molecular catalysts. In addition, a compact 3D-printed electrochemical cell in a three-electrode configuration is described which is designed to allow for simultaneous X-ray transmission and electrolyte flow through the porous working electrode.},
doi = {10.1107/s1600577519007240},
journal = {Journal of Synchrotron Radiation (Online)},
number = 5,
volume = 26,
place = {United States},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

The Problem with Determining Atomic Structure at the Nanoscale
journal, April 2007


Characterization of an Amorphous Iridium Water-Oxidation Catalyst Electrodeposited from Organometallic Precursors
journal, January 2013

  • Blakemore, James D.; Mara, Michael W.; Kushner-Lenhoff, Maxwell N.
  • Inorganic Chemistry, Vol. 52, Issue 4
  • DOI: 10.1021/ic301968j

The AMPIX electrochemical cell: a versatile apparatus for in situ X-ray scattering and spectroscopic measurements
journal, November 2012

  • Borkiewicz, Olaf J.; Shyam, Badri; Wiaderek, Kamila M.
  • Journal of Applied Crystallography, Vol. 45, Issue 6
  • DOI: 10.1107/S0021889812042720

Best Practices for Operando Battery Experiments: Influences of X-ray Experiment Design on Observed Electrochemical Reactivity
journal, May 2015

  • Borkiewicz, Olaf J.; Wiaderek, Kamila M.; Chupas, Peter J.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 11
  • DOI: 10.1021/acs.jpclett.5b00891

Application of high-energy X-rays and Pair-Distribution-Function analysis to nano-scale structural studies in catalysis
journal, July 2009


Applications of an amorphous silicon-based area detector for high-resolution, high-sensitivity and fast time-resolved pair distribution function measurements
journal, May 2007

  • Chupas, Peter J.; Chapman, Karena W.; Lee, Peter L.
  • Journal of Applied Crystallography, Vol. 40, Issue 3
  • DOI: 10.1107/S0021889807007856

Rapid-acquisition pair distribution function (RA-PDF) analysis
journal, November 2003

  • Chupas, Peter J.; Qiu, Xiangyun; Hanson, Jonathan C.
  • Journal of Applied Crystallography, Vol. 36, Issue 6, p. 1342-1347
  • DOI: 10.1107/S0021889803017564

Conduction and Reactivity in Heterogeneous-Molecular Catalysis: New Insights in Water Oxidation Catalysis by Phosphate Cobalt Oxide Films
journal, April 2016

  • Costentin, Cyrille; Porter, Thomas R.; Savéant, Jean-Michel
  • Journal of the American Chemical Society, Vol. 138, Issue 17
  • DOI: 10.1021/jacs.6b00737

Activity–Stability Trends for the Oxygen Evolution Reaction on Monometallic Oxides in Acidic Environments
journal, July 2014

  • Danilovic, Nemanja; Subbaraman, Ramachandran; Chang, Kee-Chul
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 14
  • DOI: 10.1021/jz501061n

Elucidating the Domain Structure of the Cobalt Oxide Water Splitting Catalyst by X-ray Pair Distribution Function Analysis
journal, June 2012

  • Du, Pingwu; Kokhan, Oleksandr; Chapman, Karena W.
  • Journal of the American Chemical Society, Vol. 134, Issue 27
  • DOI: 10.1021/ja303826a

Atomic layer deposition of tin oxide films using tetrakis(dimethylamino) tin
journal, March 2008

  • Elam, Jeffrey W.; Baker, David A.; Hryn, Alexander J.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 26, Issue 2
  • DOI: 10.1116/1.2835087

Atomic Layer Deposition of Indium Tin Oxide Thin Films Using Nonhalogenated Precursors
journal, February 2008

  • Elam, Jeffrey W.; Baker, David A.; Martinson, Alex B. F.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 6
  • DOI: 10.1021/jp7097312

Atomic Layer Deposition of In 2 O 3 Using Cyclopentadienyl Indium:  A New Synthetic Route to Transparent Conducting Oxide Films
journal, July 2006

  • Elam, Jeffrey W.; Martinson, Alex B. F.; Pellin, Michael J.
  • Chemistry of Materials, Vol. 18, Issue 15
  • DOI: 10.1021/cm060754y

Conformal Coating on Ultrahigh-Aspect-Ratio Nanopores of Anodic Alumina by Atomic Layer Deposition
journal, September 2003

  • Elam, J. W.; Routkevitch, D.; Mardilovich, P. P.
  • Chemistry of Materials, Vol. 15, Issue 18, p. 3507-3517
  • DOI: 10.1021/cm0303080

Intermediate-Range Structure of Self-Assembled Cobalt-Based Oxygen-Evolving Catalyst
journal, April 2013

  • Farrow, Christopher L.; Bediako, D. Kwabena; Surendranath, Yogesh
  • Journal of the American Chemical Society, Vol. 135, Issue 17
  • DOI: 10.1021/ja401276f

Heterogeneous Water Oxidation: Surface Activity versus Amorphization Activation in Cobalt Phosphate Catalysts
journal, January 2015

  • González-Flores, Diego; Sánchez, Irene; Zaharieva, Ivelina
  • Angewandte Chemie International Edition, Vol. 54, Issue 8
  • DOI: 10.1002/anie.201409333

Two-dimensional detector software: From real detector to idealised image or two-theta scan
journal, January 1996

  • Hammersley, A. P.; Svensson, S. O.; Hanfland, M.
  • High Pressure Research, Vol. 14, Issue 4-6, p. 235-248
  • DOI: 10.1080/08957959608201408

In Situ Synchrotron X-ray Diffraction Experiments on Electrochemically Deposited ZnO Nanostructures
journal, August 2008

  • Ingham, Bridget; Illy, Benoit N.; Toney, Michael F.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 38
  • DOI: 10.1021/jp806184z

Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films
journal, July 2015


Ab initio determination of solid-state nanostructure
journal, March 2006

  • Juhás, P.; Cherba, D. M.; Duxbury, P. M.
  • Nature, Vol. 440, Issue 7084
  • DOI: 10.1038/nature04556

Elucidation of the Local and Long-Range Structural Changes that Occur in Germanium Anodes in Lithium-Ion Batteries
journal, January 2015

  • Jung, Hyeyoung; Allan, Phoebe K.; Hu, Yan-Yan
  • Chemistry of Materials, Vol. 27, Issue 3
  • DOI: 10.1021/cm504312x

In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+
journal, August 2008


Structure and Valency of a Cobalt−Phosphate Water Oxidation Catalyst Determined by in Situ X-ray Spectroscopy
journal, October 2010

  • Kanan, Matthew W.; Yano, Junko; Surendranath, Yogesh
  • Journal of the American Chemical Society, Vol. 132, Issue 39
  • DOI: 10.1021/ja1023767

Water Oxidation by Amorphous Cobalt-Based Oxides: Volume Activity and Proton Transfer to Electrolyte Bases
journal, January 2014

  • Klingan, Katharina; Ringleb, Franziska; Zaharieva, Ivelina
  • ChemSusChem, Vol. 7, Issue 5
  • DOI: 10.1002/cssc.201301019

Electrochemical cell for in situ x-ray diffraction under ultrapure conditions
journal, April 1998

  • Koop, Th.; Schindler, W.; Kazimirov, A.
  • Review of Scientific Instruments, Vol. 69, Issue 4
  • DOI: 10.1063/1.1148852

Electrochemical cells for in situ EXAFS
journal, May 1984

  • Kordesch, M. E.; Hoffman, R. W.
  • Nuclear Instruments and Methods in Physics Research, Vol. 222, Issue 1-2
  • DOI: 10.1016/0167-5087(84)90556-8

Oxyanion induced variations in domain structure for amorphous cobalt oxide oxygen evolving catalysts, resolved by X-ray pair distribution function analysis
journal, December 2015

  • Kwon, Gihan; Kokhan, Oleksandr; Han, Ali
  • Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, Vol. 71, Issue 6
  • DOI: 10.1107/S2052520615022180

Ultrasmooth, High Electron Mobility Amorphous In–Zn–O Films Grown by Atomic Layer Deposition
journal, December 2013

  • Lee, Do-Joong; Kwon, Jang-Yeon; Kim, Jiyeon
  • The Journal of Physical Chemistry C, Vol. 118, Issue 1
  • DOI: 10.1021/jp409738f

Water splitting–biosynthetic system with CO 2 reduction efficiencies exceeding photosynthesis
journal, June 2016


Electrochemical Oxidation of Size-Selected Pt Nanoparticles Studied Using in Situ High-Energy-Resolution X-ray Absorption Spectroscopy
journal, September 2012

  • Merte, Lindsay R.; Behafarid, Farzad; Miller, Daniel J.
  • ACS Catalysis, Vol. 2, Issue 11
  • DOI: 10.1021/cs300494f

The Structure of Ferrihydrite, a Nanocrystalline Material
journal, June 2007


In situ X-ray diffraction techniques as a powerful tool to study battery electrode materials
journal, July 2002


Structure–function analyses of solar fuelscatalysts using in situ X-ray scattering
journal, January 2013

  • Mulfort, Karen L.; Mukherjee, Anusree; Kokhan, Oleksandr
  • Chem. Soc. Rev., Vol. 42, Issue 6
  • DOI: 10.1039/C2CS35247H

Efficient simultaneous reverse Monte Carlo modeling of pair-distribution functions and extended x-ray-absorption fine structure spectra of crystalline disordered materials
journal, February 2012

  • Németh, Károly; Chapman, Karena W.; Balasubramanian, Mahalingam
  • The Journal of Chemical Physics, Vol. 136, Issue 7
  • DOI: 10.1063/1.3684547

The Artificial Leaf
journal, January 2012

  • Nocera, Daniel G.
  • Accounts of Chemical Research, Vol. 45, Issue 5
  • DOI: 10.1021/ar2003013

In situ x-ray reflectivity and diffraction studies of the Au(001) reconstruction in an electrochemical cell
journal, September 1990


PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data
journal, July 2004

  • Qiu, Xiangyun; Thompson, Jeroen W.; Billinge, Simon J. L.
  • Journal of Applied Crystallography, Vol. 37, Issue 4, p. 678-678
  • DOI: 10.1107/S0021889804011744

Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts
journal, September 2011


Portable chamber for the study of UHV prepared electrochemical interfaces by hard x-ray diffraction
journal, March 2007

  • Renner, Frank Uwe; Gründer, Yvonne; Zegenhagen, Jörg
  • Review of Scientific Instruments, Vol. 78, Issue 3
  • DOI: 10.1063/1.2714046

Water Oxidation by Electrodeposited Cobalt Oxides-Role of Anions and Redox-Inert Cations in Structure and Function of the Amorphous Catalyst
journal, February 2012

  • Risch, Marcel; Klingan, Katharina; Ringleb, Franziska
  • ChemSusChem, Vol. 5, Issue 3
  • DOI: 10.1002/cssc.201100574

Water oxidation by amorphous cobalt-based oxides: in situ tracking of redox transitions and mode of catalysis
journal, January 2015

  • Risch, Marcel; Ringleb, Franziska; Kohlhoff, Mike
  • Energy & Environmental Science, Vol. 8, Issue 2
  • DOI: 10.1039/C4EE03004D

A transmission geometry electrochemical cell for in situ x‐ray diffraction
journal, April 1993

  • Robinson, K. M.; O’Grady, W. E.
  • Review of Scientific Instruments, Vol. 64, Issue 4
  • DOI: 10.1063/1.1144178

Time-resolved grazing-incidence pair distribution functions during deposition by radio-frequency magnetron sputtering
journal, February 2019


Electrolyte-Dependent Electrosynthesis and Activity of Cobalt-Based Water Oxidation Catalysts
journal, February 2009

  • Surendranath, Yogesh; Dincǎ, Mircea; Nocera, Daniel G.
  • Journal of the American Chemical Society, Vol. 131, Issue 7
  • DOI: 10.1021/ja807769r

Mechanistic Studies of the Oxygen Evolution Reaction by a Cobalt-Phosphate Catalyst at Neutral pH
journal, November 2010

  • Surendranath, Yogesh; Kanan, Matthew W.; Nocera, Daniel G.
  • Journal of the American Chemical Society, Vol. 132, Issue 46
  • DOI: 10.1021/ja106102b

Structure of Active Adlayers on Bimetallic Surfaces:  Oxygen Reduction on Au(111) with Bi Adlayers
journal, April 2002

  • Tamura, K.; Ocko, B. M.; Wang, J. X.
  • The Journal of Physical Chemistry B, Vol. 106, Issue 15
  • DOI: 10.1021/jp012960t

In situ x-ray-scattering study of the Au(001) reconstruction in alkaline and acidic electrolytes
journal, June 1993


In situ X-ray absorption near edge structure studies of mechanisms of passivity
journal, July 2002


In situ x-ray-diffraction and -reflectivity studies of the Au(111)/electrolyte interface: Reconstruction and anion adsorption
journal, October 1992


Design of an electrochemical cell for in situ XAS studies
journal, May 2007

  • Watanabe, N.; Morais, J.; Alves, M. C. M.
  • Journal of Electron Spectroscopy and Related Phenomena, Vol. 156-158
  • DOI: 10.1016/j.elspec.2006.12.021

Comprehensive Insights into the Structural and Chemical Changes in Mixed-Anion FeOF Electrodes by Using Operando PDF and NMR Spectroscopy
journal, March 2013

  • Wiaderek, Kamila M.; Borkiewicz, Olaf J.; Castillo-Martínez, Elizabeth
  • Journal of the American Chemical Society, Vol. 135, Issue 10
  • DOI: 10.1021/ja400229v

Solution Structures of Highly Active Molecular Ir Water-Oxidation Catalysts from Density Functional Theory Combined with High-Energy X-ray Scattering and EXAFS Spectroscopy
journal, April 2016

  • Yang, Ke R.; Matula, Adam J.; Kwon, Gihan
  • Journal of the American Chemical Society, Vol. 138, Issue 17
  • DOI: 10.1021/jacs.6b01750