DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408-5354

Abstract

We present a blind time-delay cosmographic analysis for the lens system DES J0408-5354. This system is extraordinary for the presence of two sets of multiple images at different redshifts, which provide the opportunity to obtain more information at the cost of increased modelling complexity with respect to previously analysed systems. We perform detailed modelling of the mass distribution for this lens system using three band Hubble Space Telescope imaging. We combine the measured time delays, line-of-sight central velocity dispersion of the deflector, and statistically constrained external convergence with our lens models to estimate two cosmological distances. We measure the ‘effective’ time-delay distance corresponding to the redshifts of the deflector and the lensed quasar $$D_{\Delta t}^{\rm eff}=$$$$3382_{-115}^{+146}$$ Mpc and the angular diameter distance to the deflector Dd = $$1711_{-280}^{+376}$$ Mpc, with covariance between the two distances. From these constraints on the cosmological distances, we infer the Hubble constant H0= $$74.2_{-3.0}^{+2.7}$$ km s-1 Mpc-1 assuming a flat ΛCDM cosmology and a uniform prior for Ωm as $$\Omega _{\rm m} \sim \mathcal {U}(0.05, 0.5)$$. This measurement gives the most precise constraint on H0 to date from a single lens. Our measurement is consistent with that obtained from the previous sample of six lenses analysed by the H0 Lenses in COSMOGRAIL’s Wellspring (H0LiCOW) collaboration. It is also consistent with measurements of H0 based on the local distance ladder, reinforcing the tension with the inference from early Universe probes, for example, with 2.2σ discrepancy from the cosmic microwave background measurement.

Authors:
ORCiD logo [1];  [2];  [1];  [3];  [4]; ORCiD logo [5];  [3]; ORCiD logo [5];  [4];  [5];  [6]; ORCiD logo [7];  [8]; ORCiD logo [9]; ORCiD logo [10]; ORCiD logo [11];  [5];  [10];  [12];  [5] more »;  [1]; ORCiD logo [13]; ORCiD logo [14];  [15];  [5];  [15];  [5]; ORCiD logo [16];  [17];  [4]; ORCiD logo [18];  [19];  [20];  [21];  [22]; ORCiD logo [23]; ORCiD logo [24];  [25];  [26];  [27];  [28]; ORCiD logo [29];  [30];  [31];  [20];  [12]; ORCiD logo [32];  [4];  [4];  [26];  [18];  [32]; ORCiD logo [33];  [24];  [28];  [4];  [34];  [35];  [36];  [37];  [34];  [38];  [4]; ORCiD logo [39];  [40]; ORCiD logo [35];  [28];  [41]; ORCiD logo [42];  [43];  [28]; ORCiD logo [4];  [24]; ORCiD logo [42];  [44];  [22];  [21];  [29];  [45];  [4];  [36];  [46];  [47];  [29]; ORCiD logo [48]; ORCiD logo [49]; ORCiD logo [50];  [36]; ORCiD logo [11];  [17];  [4] « less
  1. Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547, USA
  2. Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547, USA; Kavli Institute for Particle Astrophysics and Cosmology and Department of Physics, Stanford University, Stanford, CA 94305, USA
  3. DARK, Niels Bohr Institute, University of Copenhagen, Lyngbyvej 2, DK-2100 Copenhagen, Denmark
  4. Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA
  5. Institute of Physics, Laboratoire d’Astrophysique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland
  6. Department of Astronomy & Astrophysics, University of Chicago, Chicago, IL 60637, USA; Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  7. National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
  8. STAR Institute, Quartier Agora - Allée du six Août, 19c B-4000 Liège, Belgium
  9. INAF - Osservatorio Astronomico di Capodimonte, Salita Moiariello, 16, I-80131 Napoli, Italy; European Southern Observatory, Karl-Schwarschild-Str. 2, D-85748 Garching, Germany
  10. Physics Department, UC Davis, 1 Shields Ave., Davis, CA 95616, USA
  11. Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
  12. Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA; Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  13. The Inter-University Center for Astronomy and Astrophysics, Post bag 4, Ganeshkhind, Pune 411007, India
  14. Departamento de Ciencias Fisicas, Universidad Andres Bello, Fernandez Concha 700, Las Condes, Santiago, Chile
  15. Institute of Astronomy, Madingley Rd, Cambridge CB3 0HA, UK; Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
  16. Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
  17. Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
  18. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain
  19. LSST, 933 North Cherry Avenue, Tucson, AZ 85721, USA; Physics Department, 2320 Chamberlin Hall, University of Wisconsin-Madison, 1150 University Avenue Madison, WI 53706-1390, USA
  20. Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
  21. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
  22. Kavli Institute for Particle Astrophysics and Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  23. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil
  24. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA; National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  25. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona) Spain
  26. Institut d’Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain; Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain
  27. INAF-Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143 Trieste, Italy; Institute for Fundamental Physics of the Universe, Via Beirut 2, I-34014 Trieste, Italy
  28. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil; Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil
  29. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
  30. Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India
  31. Excellence Cluster Origins, Boltzmannstr. 2, D-85748 Garching, Germany; Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 Munich, Germany
  32. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA; Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  33. Kavli Institute for Particle Astrophysics and Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA; Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA
  34. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
  35. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA; Department of Physics, The Ohio State University, Columbus, OH 43210, USA
  36. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  37. Center for Astrophysics, Harvard and Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA
  38. Department of Astronomy/Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA
  39. Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA; Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA; Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA; Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101, USA
  40. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil; Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP 05314-970, Brazil
  41. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
  42. Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA
  43. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona) Spain; Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain
  44. Department of Physics and Astronomy, Pevensey Building, University of Sussex, Brighton BN1 9QH, UK
  45. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil; Instituto de Física, UFRGS, Caixa Postal 15051, Porto Alegre, RS - 91501-970, Brazil
  46. Department of Physics, Duke University Durham, NC 27708, USA
  47. Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain; Institut d’Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain
  48. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
  49. Physics Department, Brandeis University, 415 South Street, Waltham, MA 02453, USA
  50. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP); National Aeronautics and Space Administration (NASA); National Science Foundation (NSF); USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
Contributing Org.:
DES Collaboration
OSTI Identifier:
1574968
Alternate Identifier(s):
OSTI ID: 1638052; OSTI ID: 1646600; OSTI ID: 1659591; OSTI ID: 1697972; OSTI ID: 1784944
Report Number(s):
arXiv:1910.06306; FERMILAB-PUB-19-523-AE-SCD; DES-2019-0475
Journal ID: ISSN 0035-8711; oai:inspirehep.net:1759600; TRN: US2001370
Grant/Contract Number:  
AC02-07CH11359; SC0007859; SC0019193; AC05-00OR22725; AC02-76SF00515; HST-GO-15320; AST-1714953; AST-1906976; AST-1715611; ACI-1548562; ACI-1445606; PHY-1607611; AST-1138766; AST-1536171; 787866; 664931; AYA2015-71825; ESP2015-66861; FPA2015-68048; SEV-2016-0588; SEV-2016-0597; MDM-2015-0509; 240672; 291329; 306478
Resource Type:
Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 494; Journal Issue: 4; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; gravitational lensing: strong; cosmological parameters; distance scale; cosmology: observations

Citation Formats

Shajib, A. J., Birrer, S., Treu, T., Agnello, A., Buckley-Geer, E. J., Chan, J. H. H., Christensen, L., Lemon, C., Lin, H., Millon, M., Poh, J., Rusu, C. E., Sluse, D., Spiniello, C., Chen, G. C-F, Collett, T., Courbin, F., Fassnacht, C. D., Frieman, J., Galan, A., Gilman, D., More, A., Anguita, T., Auger, M. W., Bonvin, V., McMahon, R., Meylan, G., Wong, K. C., Abbott, T. M. C., Annis, J., Avila, S., Bechtol, K., Brooks, D., Brout, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Costanzi, M., da Costa, L. N., De Vicente, J., Desai, S., Dietrich, J. P., Doel, P., Drlica-Wagner, A., Evrard, A. E., Finley, D. A., Flaugher, B., Fosalba, P., García-Bellido, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hollowood, D. L., Honscheid, K., Huterer, D., James, D. J., Jeltema, T., Krause, E., Kuropatkin, N., Li, T. S., Lima, M., MacCrann, N., Maia, M. A. G., Marshall, J. L., Melchior, P., Miquel, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Plazas, A. A., Romer, A. K., Roodman, A., Sako, M., Sanchez, E., Santiago, B., Scarpine, V., Schubnell, M., Scolnic, D., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Suchyta, E., Tarle, G., Thomas, D., Walker, A. R., and Zhang, Y. STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408-5354. United States: N. p., 2020. Web. doi:10.1093/mnras/staa828.
Shajib, A. J., Birrer, S., Treu, T., Agnello, A., Buckley-Geer, E. J., Chan, J. H. H., Christensen, L., Lemon, C., Lin, H., Millon, M., Poh, J., Rusu, C. E., Sluse, D., Spiniello, C., Chen, G. C-F, Collett, T., Courbin, F., Fassnacht, C. D., Frieman, J., Galan, A., Gilman, D., More, A., Anguita, T., Auger, M. W., Bonvin, V., McMahon, R., Meylan, G., Wong, K. C., Abbott, T. M. C., Annis, J., Avila, S., Bechtol, K., Brooks, D., Brout, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Costanzi, M., da Costa, L. N., De Vicente, J., Desai, S., Dietrich, J. P., Doel, P., Drlica-Wagner, A., Evrard, A. E., Finley, D. A., Flaugher, B., Fosalba, P., García-Bellido, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hollowood, D. L., Honscheid, K., Huterer, D., James, D. J., Jeltema, T., Krause, E., Kuropatkin, N., Li, T. S., Lima, M., MacCrann, N., Maia, M. A. G., Marshall, J. L., Melchior, P., Miquel, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Plazas, A. A., Romer, A. K., Roodman, A., Sako, M., Sanchez, E., Santiago, B., Scarpine, V., Schubnell, M., Scolnic, D., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Suchyta, E., Tarle, G., Thomas, D., Walker, A. R., & Zhang, Y. STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408-5354. United States. https://doi.org/10.1093/mnras/staa828
Shajib, A. J., Birrer, S., Treu, T., Agnello, A., Buckley-Geer, E. J., Chan, J. H. H., Christensen, L., Lemon, C., Lin, H., Millon, M., Poh, J., Rusu, C. E., Sluse, D., Spiniello, C., Chen, G. C-F, Collett, T., Courbin, F., Fassnacht, C. D., Frieman, J., Galan, A., Gilman, D., More, A., Anguita, T., Auger, M. W., Bonvin, V., McMahon, R., Meylan, G., Wong, K. C., Abbott, T. M. C., Annis, J., Avila, S., Bechtol, K., Brooks, D., Brout, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Costanzi, M., da Costa, L. N., De Vicente, J., Desai, S., Dietrich, J. P., Doel, P., Drlica-Wagner, A., Evrard, A. E., Finley, D. A., Flaugher, B., Fosalba, P., García-Bellido, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hollowood, D. L., Honscheid, K., Huterer, D., James, D. J., Jeltema, T., Krause, E., Kuropatkin, N., Li, T. S., Lima, M., MacCrann, N., Maia, M. A. G., Marshall, J. L., Melchior, P., Miquel, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Plazas, A. A., Romer, A. K., Roodman, A., Sako, M., Sanchez, E., Santiago, B., Scarpine, V., Schubnell, M., Scolnic, D., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Suchyta, E., Tarle, G., Thomas, D., Walker, A. R., and Zhang, Y. Sat . "STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408-5354". United States. https://doi.org/10.1093/mnras/staa828. https://www.osti.gov/servlets/purl/1574968.
@article{osti_1574968,
title = {STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408-5354},
author = {Shajib, A. J. and Birrer, S. and Treu, T. and Agnello, A. and Buckley-Geer, E. J. and Chan, J. H. H. and Christensen, L. and Lemon, C. and Lin, H. and Millon, M. and Poh, J. and Rusu, C. E. and Sluse, D. and Spiniello, C. and Chen, G. C-F and Collett, T. and Courbin, F. and Fassnacht, C. D. and Frieman, J. and Galan, A. and Gilman, D. and More, A. and Anguita, T. and Auger, M. W. and Bonvin, V. and McMahon, R. and Meylan, G. and Wong, K. C. and Abbott, T. M. C. and Annis, J. and Avila, S. and Bechtol, K. and Brooks, D. and Brout, D. and Burke, D. L. and Carnero Rosell, A. and Carrasco Kind, M. and Carretero, J. and Castander, F. J. and Costanzi, M. and da Costa, L. N. and De Vicente, J. and Desai, S. and Dietrich, J. P. and Doel, P. and Drlica-Wagner, A. and Evrard, A. E. and Finley, D. A. and Flaugher, B. and Fosalba, P. and García-Bellido, J. and Gerdes, D. W. and Gruen, D. and Gruendl, R. A. and Gschwend, J. and Gutierrez, G. and Hollowood, D. L. and Honscheid, K. and Huterer, D. and James, D. J. and Jeltema, T. and Krause, E. and Kuropatkin, N. and Li, T. S. and Lima, M. and MacCrann, N. and Maia, M. A. G. and Marshall, J. L. and Melchior, P. and Miquel, R. and Ogando, R. L. C. and Palmese, A. and Paz-Chinchón, F. and Plazas, A. A. and Romer, A. K. and Roodman, A. and Sako, M. and Sanchez, E. and Santiago, B. and Scarpine, V. and Schubnell, M. and Scolnic, D. and Serrano, S. and Sevilla-Noarbe, I. and Smith, M. and Soares-Santos, M. and Suchyta, E. and Tarle, G. and Thomas, D. and Walker, A. R. and Zhang, Y.},
abstractNote = {We present a blind time-delay cosmographic analysis for the lens system DES J0408-5354. This system is extraordinary for the presence of two sets of multiple images at different redshifts, which provide the opportunity to obtain more information at the cost of increased modelling complexity with respect to previously analysed systems. We perform detailed modelling of the mass distribution for this lens system using three band Hubble Space Telescope imaging. We combine the measured time delays, line-of-sight central velocity dispersion of the deflector, and statistically constrained external convergence with our lens models to estimate two cosmological distances. We measure the ‘effective’ time-delay distance corresponding to the redshifts of the deflector and the lensed quasar $D_{\Delta t}^{\rm eff}=$$3382_{-115}^{+146}$ Mpc and the angular diameter distance to the deflector Dd = $1711_{-280}^{+376}$ Mpc, with covariance between the two distances. From these constraints on the cosmological distances, we infer the Hubble constant H0= $74.2_{-3.0}^{+2.7}$ km s-1 Mpc-1 assuming a flat ΛCDM cosmology and a uniform prior for Ωm as $\Omega _{\rm m} \sim \mathcal {U}(0.05, 0.5)$. This measurement gives the most precise constraint on H0 to date from a single lens. Our measurement is consistent with that obtained from the previous sample of six lenses analysed by the H0 Lenses in COSMOGRAIL’s Wellspring (H0LiCOW) collaboration. It is also consistent with measurements of H0 based on the local distance ladder, reinforcing the tension with the inference from early Universe probes, for example, with 2.2σ discrepancy from the cosmic microwave background measurement.},
doi = {10.1093/mnras/staa828},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 4,
volume = 494,
place = {United States},
year = {2020},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 92 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package
journal, August 2018

  • Price-Whelan, A. M.; Sipőcz, B. M.; Günther, H. M.
  • The Astronomical Journal, Vol. 156, Issue 3
  • DOI: 10.3847/1538-3881/aabc4f

The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2016 follow-up campaign – I. Overview and classification of candidates selected by two techniques
journal, August 2018

  • Treu, T.; Agnello, A.; Baumer, M. A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 481, Issue 1
  • DOI: 10.1093/mnras/sty2329

Nested Sampling
conference, January 2004

  • Skilling, John
  • BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: 24th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, AIP Conference Proceedings
  • DOI: 10.1063/1.1835238

VDES J2325−5229 a z = 2.7 gravitationally lensed quasar discovered using morphology-independent supervised machine learning
journal, November 2016

  • Ostrovski, Fernanda; McMahon, Richard G.; Connolly, Andrew J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 465, Issue 4
  • DOI: 10.1093/mnras/stw2958

Models of the strongly lensed quasar DES J0408−5354
journal, September 2017

  • Agnello, A.; Lin, H.; Buckley-Geer, L.
  • Monthly Notices of the Royal Astronomical Society, Vol. 472, Issue 4
  • DOI: 10.1093/mnras/stx2242

Astrometric requirements for strong lensing time-delay cosmography
journal, August 2019

  • Birrer, Simon; Treu, Tommaso
  • Monthly Notices of the Royal Astronomical Society, Vol. 489, Issue 2
  • DOI: 10.1093/mnras/stz2254

Looking at the Fundamental Plane through a Gravitational Lens
journal, August 2006

  • Bertin, G.; Lombardi, M.
  • The Astrophysical Journal, Vol. 648, Issue 1
  • DOI: 10.1086/507298

Two Accurate Time-Delay Distances from Strong Lensing: Implications for Cosmology
journal, March 2013


David Draper and E. I. George, and a rejoinder by the authors
journal, November 1999

  • Volinsky, Chris T.; Raftery, Adrian E.; Madigan, David
  • Statistical Science, Vol. 14, Issue 4
  • DOI: 10.1214/ss/1009212519

Abel integral equation inversion and deconvolution by multi-Gaussian approximation
journal, January 1991

  • Bendinelli, Orazio
  • The Astrophysical Journal, Vol. 366
  • DOI: 10.1086/169595

Discovery of the Lensed Quasar System DES J0408-5354
journal, March 2017


The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2016 follow-up campaign. II. New quasar lenses from double component fitting.
journal, August 2018

  • Anguita, T.; Schechter, P. L.; Kuropatkin, N.
  • Monthly Notices of the Royal Astronomical Society
  • DOI: 10.1093/mnras/sty2172

lenstronomy: Multi-purpose gravitational lens modelling software package
journal, December 2018


H0LiCOW – III. Quantifying the effect of mass along the line of sight to the gravitational lens HE 0435−1223 through weighted galaxy counts★
journal, February 2017

  • Rusu, Cristian E.; Fassnacht, Christopher D.; Sluse, Dominique
  • Monthly Notices of the Royal Astronomical Society, Vol. 467, Issue 4
  • DOI: 10.1093/mnras/stx285

The mass-sheet degeneracy and time-delay cosmography: analysis of the strong lens RXJ1131-1231
journal, August 2016

  • Birrer, Simon; Amara, Adam; Refregier, Alexandre
  • Journal of Cosmology and Astroparticle Physics, Vol. 2016, Issue 08
  • DOI: 10.1088/1475-7516/2016/08/020

SHARP – III. First use of adaptive-optics imaging to constrain cosmology with gravitational lens time delays
journal, August 2016

  • Chen, Geoff C. -F.; Suyu, Sherry H.; Wong, Kenneth C.
  • Monthly Notices of the Royal Astronomical Society, Vol. 462, Issue 4
  • DOI: 10.1093/mnras/stw991

ZAP – enhanced PCA sky subtraction for integral field spectroscopy
journal, March 2016

  • Soto, Kurt T.; Lilly, Simon J.; Bacon, Roland
  • Monthly Notices of the Royal Astronomical Society, Vol. 458, Issue 3
  • DOI: 10.1093/mnras/stw474

Spherical stellar systems with spheroidal velocity distributions
journal, June 1985


On the Possibility of Determining Hubble's Parameter and the Masses of Galaxies from the Gravitational Lens Effect
journal, September 1964


Cosmological constraints from the double source plane lens SDSSJ0946+1006
journal, July 2014

  • Collett, Thomas E.; Auger, Matthew W.
  • Monthly Notices of the Royal Astronomical Society, Vol. 443, Issue 2
  • DOI: 10.1093/mnras/stu1190

The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample
journal, March 2017

  • Alam, Shadab; Ata, Metin; Bailey, Stephen
  • Monthly Notices of the Royal Astronomical Society, Vol. 470, Issue 3
  • DOI: 10.1093/mnras/stx721

KiDS-SQuaD: The KiDS Strongly lensed Quasar Detection project
journal, July 2018

  • Spiniello, C.; Agnello, A.; Napolitano, N. R.
  • Monthly Notices of the Royal Astronomical Society, Vol. 480, Issue 1
  • DOI: 10.1093/mnras/sty1923

A SHARP view of H0LiCOW: H0 from three time-delay gravitational lens systems with adaptive optics imaging
journal, September 2019

  • Chen, Geoff C-F; Fassnacht, Christopher D.; Suyu, Sherry H.
  • Monthly Notices of the Royal Astronomical Society, Vol. 490, Issue 2
  • DOI: 10.1093/mnras/stz2547

Measuring angular diameter distances of strong gravitational lenses
journal, November 2015


Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant
journal, September 1998

  • Riess, Adam G.; Filippenko, Alexei V.; Challis, Peter
  • The Astronomical Journal, Vol. 116, Issue 3
  • DOI: 10.1086/300499

H0LiCOW – V. New COSMOGRAIL time delays of HE 0435−1223: H 0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model
journal, November 2016

  • Bonvin, V.; Courbin, F.; Suyu, S. H.
  • Monthly Notices of the Royal Astronomical Society, Vol. 465, Issue 4
  • DOI: 10.1093/mnras/stw3006

Cosmological Applications of Gravitational Lensing
journal, January 1992


Time-delay cosmographic forecasts with strong lensing and JWST stellar kinematics
journal, February 2020

  • Yıldırım, Akın; Suyu, Sherry H.; Halkola, Aleksi
  • Monthly Notices of the Royal Astronomical Society, Vol. 493, Issue 4
  • DOI: 10.1093/mnras/staa498

The relationship between infrared, optical, and ultraviolet extinction
journal, October 1989

  • Cardelli, Jason A.; Clayton, Geoffrey C.; Mathis, John S.
  • The Astrophysical Journal, Vol. 345
  • DOI: 10.1086/167900

Tensions between the early and late Universe
journal, September 2019


An Accurate Physical Model for Halo Concentrations
journal, January 2019


Is every strong lens model unhappy in its own way? Uniform modelling of a sample of 13 quadruply+ imaged quasars
journal, December 2018

  • Shajib, A. J.; Birrer, S.; Treu, T.
  • Monthly Notices of the Royal Astronomical Society, Vol. 483, Issue 4
  • DOI: 10.1093/mnras/sty3397

COLOSSUS: A Python Toolkit for Cosmology, Large-scale Structure, and Dark Matter Halos
journal, December 2018


Time-delay cosmography: increased leverage with angular diameter distances
journal, April 2016


DES meets Gaia: discovery of strongly lensed quasars from a multiplet search
journal, June 2018

  • Agnello, A.; Lin, H.; Kuropatkin, N.
  • Monthly Notices of the Royal Astronomical Society, Vol. 479, Issue 4
  • DOI: 10.1093/mnras/sty1419

Microlensing makes lensed quasar time delays significantly time variable
journal, September 2017

  • Tie, S. S.; Kochanek, C. S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 473, Issue 1
  • DOI: 10.1093/mnras/stx2348

UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z = 0−10
journal, May 2019

  • Behroozi, Peter; Wechsler, Risa H.; Hearin, Andrew P.
  • Monthly Notices of the Royal Astronomical Society, Vol. 488, Issue 3
  • DOI: 10.1093/mnras/stz1182

Bridges: a uniquely flexible HPC resource for new communities and data analytics
conference, January 2015

  • Nystrom, Nicholas A.; Levine, Michael J.; Roskies, Ralph Z.
  • Proceedings of the 2015 XSEDE Conference on Scientific Advancements Enabled by Enhanced Cyberinfrastructure - XSEDE '15
  • DOI: 10.1145/2792745.2792775

Data mining for gravitationally lensed quasars
journal, February 2015

  • Agnello, Adriano; Kelly, Brandon C.; Treu, Tommaso
  • Monthly Notices of the Royal Astronomical Society, Vol. 448, Issue 2
  • DOI: 10.1093/mnras/stv037

Fast Calculation of a Family of Elliptical Gravitational Lens Models
journal, August 1998

  • Barkana, Rennan
  • The Astrophysical Journal, Vol. 502, Issue 2
  • DOI: 10.1086/305950

Quantifying Environmental and Line-of-sight Effects in Models of Strong Gravitational Lens Systems
journal, February 2017


nestcheck: error analysis, diagnostic tests and plots for nested sampling calculations
journal, September 2018


The Sloan Lens ACS Survey. VI. Discovery and Analysis of a Double Einstein Ring1
journal, April 2008

  • Gavazzi, Raphaël; Treu, Tommaso; Koopmans, Léon V. E.
  • The Astrophysical Journal, Vol. 677, Issue 2
  • DOI: 10.1086/529541

Cosmological parameters from CMB and other data: A Monte Carlo approach
journal, November 2002


Discovery of two gravitationally lensed quasars in the Dark Energy Survey
journal, October 2015

  • Agnello, A.; Treu, T.; Ostrovski, F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 454, Issue 2
  • DOI: 10.1093/mnras/stv2171

Constraining the microlensing effect on time delays with a new time-delay prediction model in H0 measurements
journal, September 2018

  • Chen, Geoff C-F; Chan, James H. H.; Bonvin, Vivien
  • Monthly Notices of the Royal Astronomical Society, Vol. 481, Issue 1
  • DOI: 10.1093/mnras/sty2350

H0LiCOW – IV. Lens mass model of HE 0435−1223 and blind measurement of its time-delay distance for cosmology
journal, November 2016

  • Wong, Kenneth C.; Suyu, Sherry H.; Auger, Matthew W.
  • Monthly Notices of the Royal Astronomical Society, Vol. 465, Issue 4
  • DOI: 10.1093/mnras/stw3077

THE SCALING OF STELLAR MASS AND CENTRAL STELLAR VELOCITY DISPERSION FOR QUIESCENT GALAXIES AT z < 0.7
journal, December 2016

  • Zahid, H. Jabran; Geller, Margaret J.; Fabricant, Daniel G.
  • The Astrophysical Journal, Vol. 832, Issue 2
  • DOI: 10.3847/0004-637X/832/2/203

Distribution functions for spherical galaxies
journal, May 1985


Observation and Confirmation of six Strong-Lensing Systems in the dark Energy Survey Science Verification data
journal, August 2016


The Quadruple Gravitational Lens PG 1115+080: Time Delays and Models
journal, February 1997

  • Schechter, Paul L.; Bailyn, Charles D.; Barr, Robert
  • The Astrophysical Journal, Vol. 475, Issue 2
  • DOI: 10.1086/310478

Simulations of the formation, evolution and clustering of galaxies and quasars
journal, June 2005

  • Springel, Volker; White, Simon D. M.; Jenkins, Adrian
  • Nature, Vol. 435, Issue 7042
  • DOI: 10.1038/nature03597

“Refsdal” Meets Popper: Comparing Predictions of the Re-Appearance of the Multiply Imaged Supernova Behind Macsj1149.5+2223
journal, January 2016


Measuring the Value of the Hubble Constant “à la Refsdal”
journal, June 2018


Matplotlib: A 2D Graphics Environment
journal, January 2007


The SWELLS survey - II. Breaking the disc-halo degeneracy in the spiral galaxy gravitational lens SDSS J2141−0001★: The SWELLS survey - II
journal, September 2011

  • Dutton, Aaron A.; Brewer, Brendon J.; Marshall, Philip J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 417, Issue 3
  • DOI: 10.1111/j.1365-2966.2011.18706.x

Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships
journal, April 2006

  • Vestergaard, Marianne; Peterson, Bradley M.
  • The Astrophysical Journal, Vol. 641, Issue 2
  • DOI: 10.1086/500572

Measurements of Ω and Λ from 42 High‐Redshift Supernovae
journal, June 1999

  • Perlmutter, S.; Aldering, G.; Goldhaber, G.
  • The Astrophysical Journal, Vol. 517, Issue 2
  • DOI: 10.1086/307221

The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early‐Type Lens Galaxies
journal, February 2006

  • Bolton, Adam S.; Burles, Scott; Koopmans, Leon V. E.
  • The Astrophysical Journal, Vol. 638, Issue 2
  • DOI: 10.1086/498884

Gravitational lens Modeling with Basis sets
journal, November 2015


SExtractor: Software for source extraction
journal, June 1996

  • Bertin, E.; Arnouts, S.
  • Astronomy and Astrophysics Supplement Series, Vol. 117, Issue 2
  • DOI: 10.1051/aas:1996164

Shapelets -- I. A method for image analysis
journal, January 2003


A Universal Density Profile from Hierarchical Clustering
journal, December 1997

  • Navarro, Julio F.; Frenk, Carlos S.; White, Simon D. M.
  • The Astrophysical Journal, Vol. 490, Issue 2
  • DOI: 10.1086/304888

Ray-tracing through the Millennium Simulation: Born corrections and lens-lens coupling in cosmic shear and galaxy-galaxy lensing
journal, March 2009


Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing
journal, August 2018


iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova
journal, April 2017


SHARP - I. A high-resolution multiband view of the infrared Einstein ring of JVAS B1938+666: SHARP - I. JVAS B1938+666
journal, July 2012


The Sloan Lens ACS Survey. IV. The Mass Density Profile of Early‐Type Galaxies out to 100 Effective Radii
journal, September 2007

  • Gavazzi, Raphael; Treu, Tommaso; Rhodes, Jason D.
  • The Astrophysical Journal, Vol. 667, Issue 1
  • DOI: 10.1086/519237

Cosmology from Gravitational lens time Delays and Planck data
journal, June 2014


H0LiCOW – I. H0 Lenses in COSMOGRAIL's Wellspring: program overview
journal, February 2017

  • Suyu, S. H.; Bonvin, V.; Courbin, F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 468, Issue 3
  • DOI: 10.1093/mnras/stx483

polychord: next-generation nested sampling
journal, September 2015

  • Handley, W. J.; Hobson, M. P.; Lasenby, A. N.
  • Monthly Notices of the Royal Astronomical Society, Vol. 453, Issue 4
  • DOI: 10.1093/mnras/stv1911

emcee : The MCMC Hammer
journal, March 2013

  • Foreman-Mackey, Daniel; Hogg, David W.; Lang, Dustin
  • Publications of the Astronomical Society of the Pacific, Vol. 125, Issue 925
  • DOI: 10.1086/670067

Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality
journal, December 2008

  • Tinker, Jeremy; Kravtsov, Andrey V.; Klypin, Anatoly
  • The Astrophysical Journal, Vol. 688, Issue 2
  • DOI: 10.1086/591439

Constraining the dark energy equation of state with double-source plane strong lenses: Constraining wDE with compound lenses
journal, July 2012


COSMOGRAIL: XVII. Time delays for the quadruply imaged quasar PG 1115+080⋆
journal, August 2018


XSEDE: Accelerating Scientific Discovery
journal, September 2014

  • Towns, John; Cockerill, Timothy; Dahan, Maytal
  • Computing in Science & Engineering, Vol. 16, Issue 5
  • DOI: 10.1109/MCSE.2014.80

Analytical models for galactic nuclei
journal, January 1996


The relation between velocity dispersion and mass in simulated clusters of galaxies: dependence on the tracer and the baryonic physics
journal, February 2013

  • Munari, E.; Biviano, A.; Borgani, S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 430, Issue 4
  • DOI: 10.1093/mnras/stt049

The halos of satellite galaxies: the companion of the massive elliptical lens SL2S J08544−0121
journal, November 2010


The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch
journal, August 2019

  • Freedman, Wendy L.; Madore, Barry F.; Hatt, Dylan
  • The Astrophysical Journal, Vol. 882, Issue 1
  • DOI: 10.3847/1538-4357/ab2f73

A Catalog of Quasar Properties from Sloan Digital sky Survey data Release 7
journal, June 2011

  • Shen, Yue; Richards, Gordon T.; Strauss, Michael A.
  • The Astrophysical Journal Supplement Series, Vol. 194, Issue 2
  • DOI: 10.1088/0067-0049/194/2/45

Evidence for radial variations in the stellar mass-to-light ratio of massive galaxies from weak and strong lensing
journal, August 2018

  • Sonnenfeld, Alessandro; Leauthaud, Alexie; Auger, Matthew W.
  • Monthly Notices of the Royal Astronomical Society, Vol. 481, Issue 1
  • DOI: 10.1093/mnras/sty2262

Time delay cosmography
journal, July 2016


Calibration and Limitations of the Mg ii Line-based Black Hole Masses
journal, June 2018

  • Woo, Jong-Hak; Le, Huynh Anh N.; Karouzos, Marios
  • The Astrophysical Journal, Vol. 859, Issue 2
  • DOI: 10.3847/1538-4357/aabf3e

Dissecting the Gravitational lens B1608+656. ii. Precision Measurements of the Hubble Constant, Spatial Curvature, and the dark Energy Equation of State
journal, February 2010


On model-dependent bounds on H(0) from gravitational images Application of Q0957 + 561A,B
journal, February 1985

  • Falco, E. E.; Gorenstein, M. V.; Shapiro, I. I.
  • The Astrophysical Journal, Vol. 289
  • DOI: 10.1086/184422

Astropy: A community Python package for astronomy
journal, September 2013


Improving time-delay cosmography with spatially resolved kinematics
journal, September 2017

  • Shajib, Anowar J.; Treu, Tommaso; Agnello, Adriano
  • Monthly Notices of the Royal Astronomical Society, Vol. 473, Issue 1
  • DOI: 10.1093/mnras/stx2302

Source-position transformation: an approximate invariance in strong gravitational lensing
journal, April 2014


A Determination of H 0 with the CLASS Gravitational Lens B1608+656. III. A Significant Improvement in the Precision of the Time Delay Measurements
journal, December 2002

  • Fassnacht, C. D.; Xanthopoulos, E.; Koopmans, L. V. E.
  • The Astrophysical Journal, Vol. 581, Issue 2
  • DOI: 10.1086/344368

The Sloan lens acs Survey. x. Stellar, Dynamical, and Total mass Correlations of Massive Early-Type Galaxies
journal, November 2010


Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens
journal, March 2015


Efficient multi-Gaussian expansion of galaxies
journal, June 2002


The Sloan Lens ACS Survey. II. Stellar Populations and Internal Structure of Early‐Type Lens Galaxies
journal, April 2006

  • Treu, Tommaso; Koopmans, Leon V.; Bolton, Adam S.
  • The Astrophysical Journal, Vol. 640, Issue 2
  • DOI: 10.1086/500124

H0LiCOW – IX. Cosmographic analysis of the doubly imaged quasar SDSS 1206+4332 and a new measurement of the Hubble constant
journal, January 2019

  • Birrer, S.; Treu, T.; Rusu, C. E.
  • Monthly Notices of the Royal Astronomical Society, Vol. 484, Issue 4
  • DOI: 10.1093/mnras/stz200

The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations
journal, September 2017

  • Diehl, H. T.; Buckley-Geer, E. J.; Lindgren, K. A.
  • The Astrophysical Journal Supplement Series, Vol. 232, Issue 1
  • DOI: 10.3847/1538-4365/aa8667

Microlensing of the broad line region in 17 lensed quasars
journal, July 2012


Quasar lenses and pairs in the VST-ATLAS and Gaia
journal, December 2017

  • Agnello, A.; Schechter, P. L.; Morgan, N. D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 475, Issue 2
  • DOI: 10.1093/mnras/stx3226

Dark matter in elliptical galaxies - II. Estimating the mass within the virial radius
journal, November 2005


H0LiCOW – X. Spectroscopic/imaging survey and galaxy-group identification around the strong gravitational lens system WFI 2033−4723
journal, September 2019

  • Sluse, D.; Rusu, C. E.; Fassnacht, C. D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 490, Issue 1
  • DOI: 10.1093/mnras/stz2483

The internal structure of the lens PG1115+080: breaking degeneracies in the value of the Hubble constant
journal, September 2002


Unified lensing and kinematic analysis for any elliptical mass profile
journal, July 2019

  • Shajib, Anowar J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 488, Issue 1
  • DOI: 10.1093/mnras/stz1796

Evidence for dark Matter Contraction and a Salpeter Initial mass Function in a Massive Early-Type Galaxy
journal, June 2012


Dynamical models of elliptical galaxies – I. Simple methods
journal, June 2014

  • Agnello, A.; Evans, N. W.; Romanowsky, A. J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 442, Issue 4
  • DOI: 10.1093/mnras/stu959

Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM
journal, May 2019

  • Riess, Adam G.; Casertano, Stefano; Yuan, Wenlong
  • The Astrophysical Journal, Vol. 876, Issue 1
  • DOI: 10.3847/1538-4357/ab1422

The MUSE Hubble Ultra Deep Field Survey: V. Spatially resolved stellar kinematics of galaxies at redshift 0.2 ≲  z  ≲ 0.8⋆
journal, November 2017


Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam's Window
journal, December 1994


Improving the Precision of Time-Delay Cosmography with Observations of Galaxies Along the line of Sight
journal, April 2013


CosmoHammer: Cosmological parameter estimation with the MCMC Hammer
journal, August 2013