DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stability, Crystal Chemistry, and Magnetism of U2+xNi21–x\B6 and Nb3–yNi20+yB6 and the Role of Uranium in the Formation of the Quaternary U2–zNbzNi21B6 and UδNb3-δ Ni20B6 Systems

Abstract

In this work, we investigated the U–Ni–B and Nb–Ni–B systems to search for possible new heavy fermion compounds and superconducting materials. The formation, crystal chemistry, and physical properties of U2Ni21B6 and Nb3–yNi20+yB6 [ternary derivatives of the cubic Cr23C6-type (cF116, $$Fm\bar{3}m$$)] have been studied; the formation of the hypothetical “U3Ni20B6” and “Nb2Ni21B6” has been disproved. U2Ni21B6 [a = 10.6701(2) Å] crystallizes in the ordered W2Cr21C6-type, whereas Nb3–yNi20+yB6 [a = 10.5842(1) Å] adopts the Mg3Ni20B6-type. Ni in U2Ni21B6 can be substituted by U, leading to the solid solution U2+xNi21–xB6 (0 ≤ x ≤ 0.3); oppositely, Nb in Nb3Ni20B6 is partially replaced by Ni, forming the solution Nb3–yNi20+yB6 (0 ≤ y ≤ 0.5), none of them reaching the limit corresponding to the hypothetically ordered “U3Ni20B6” and “Nb2Ni21B6”. These results prompted us to investigate quaternary compounds U2–zNbzNi21B6 and UδNb3-δNi20B6: strong competition in the occupancy of the 4a and 8c sites by U, Nb, and Ni atoms has been observed, with the 4a site occupied by U/Ni atoms only and the 8c site filled by U/Nb atoms only. U2Ni21B6, U2.3Ni20.7B6, and Nb3Ni20B6 are Pauli paramagnets. Interestingly, Nb2.5Ni20.5B6 shows ferromagnetism with TC ≈ 11 K; the Curie–Weiss fit gives an effective magnetic moment of 2.78 μB/Ni, suggesting that all Ni atoms in the formula unit contribute to the total magnetic moment. The M(H) data at 2 K further corroborate the ferromagnetic behavior with a saturation moment of 10 μB/fu (≈0.49 μB/Ni). The magnetic moment of Ni at the 4a site induces a moment in all of the Ni atoms of the whole unit cell (32f and 48h sites), with all atoms ordering ferromagnetically at 11 K. Density functional theory (DFT) shows that the formation of U2Ni21B6 and Nb3Ni20B6 is energetically preferred. The various electronic states generating ferromagnetism on Nb2.5Ni20.5B6 and Pauli paramagnetism on U2Ni21B6 and Nb3Ni20B6 have been identified.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [3]; ORCiD logo [4];  [5];  [6];  [7];  [1];  [8]; ORCiD logo [2];  [1]
  1. Univ. of Genova (Italy). Dept. of Chemistry
  2. Stockholm Univ. (Sweden). Dept. of Materials and Environmental Chemistry
  3. Ames Lab., and Iowa State Univ., Ames, IA (United States)
  4. Kurukshetra Univ., Haryana (India). Dept. of Physics
  5. Institute SPIN-CNR, Genova (Italy)
  6. Tata Inst. of Fundamental Research, Mumbai (India). Dept. of Condensed Matter Physics & Materials Science; Ramakrishna Mission Vivekananda Educational and Research Inst., West Bengal (India). Dept. of Physics
  7. Tata Inst. of Fundamental Research, Mumbai (India). Dept. of Condensed Matter Physics & Materials Science
  8. Univ. of Genova (Italy). Dept. of Physics
Publication Date:
Research Org.:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
OSTI Identifier:
1574818
Report Number(s):
IS-J-10083
Journal ID: ISSN 0020-1669; TRN: US2001207
Grant/Contract Number:  
AC02-07CH11358
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 58; Journal Issue: 22; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Provino, Alessia, Smetana, Volodymyr, Hackett, Timothy A., Paudyal, Durga, Kashyap, Manish K., Bernini, Cristina, Bhattacharyya, Amitava, Dhar, Sudesh K., Pani, Marcella, Gatti, Flavio, Mudring, Anja-Verena, and Manfrinetti, Pietro. Stability, Crystal Chemistry, and Magnetism of U2+xNi21–x\B6 and Nb3–yNi20+yB6 and the Role of Uranium in the Formation of the Quaternary U2–zNbzNi21B6 and UδNb3-δ Ni20B6 Systems. United States: N. p., 2019. Web. doi:10.1021/acs.inorgchem.9b01440.
Provino, Alessia, Smetana, Volodymyr, Hackett, Timothy A., Paudyal, Durga, Kashyap, Manish K., Bernini, Cristina, Bhattacharyya, Amitava, Dhar, Sudesh K., Pani, Marcella, Gatti, Flavio, Mudring, Anja-Verena, & Manfrinetti, Pietro. Stability, Crystal Chemistry, and Magnetism of U2+xNi21–x\B6 and Nb3–yNi20+yB6 and the Role of Uranium in the Formation of the Quaternary U2–zNbzNi21B6 and UδNb3-δ Ni20B6 Systems. United States. https://doi.org/10.1021/acs.inorgchem.9b01440
Provino, Alessia, Smetana, Volodymyr, Hackett, Timothy A., Paudyal, Durga, Kashyap, Manish K., Bernini, Cristina, Bhattacharyya, Amitava, Dhar, Sudesh K., Pani, Marcella, Gatti, Flavio, Mudring, Anja-Verena, and Manfrinetti, Pietro. Fri . "Stability, Crystal Chemistry, and Magnetism of U2+xNi21–x\B6 and Nb3–yNi20+yB6 and the Role of Uranium in the Formation of the Quaternary U2–zNbzNi21B6 and UδNb3-δ Ni20B6 Systems". United States. https://doi.org/10.1021/acs.inorgchem.9b01440. https://www.osti.gov/servlets/purl/1574818.
@article{osti_1574818,
title = {Stability, Crystal Chemistry, and Magnetism of U2+xNi21–x\B6 and Nb3–yNi20+yB6 and the Role of Uranium in the Formation of the Quaternary U2–zNbzNi21B6 and UδNb3-δ Ni20B6 Systems},
author = {Provino, Alessia and Smetana, Volodymyr and Hackett, Timothy A. and Paudyal, Durga and Kashyap, Manish K. and Bernini, Cristina and Bhattacharyya, Amitava and Dhar, Sudesh K. and Pani, Marcella and Gatti, Flavio and Mudring, Anja-Verena and Manfrinetti, Pietro},
abstractNote = {In this work, we investigated the U–Ni–B and Nb–Ni–B systems to search for possible new heavy fermion compounds and superconducting materials. The formation, crystal chemistry, and physical properties of U2Ni21B6 and Nb3–yNi20+yB6 [ternary derivatives of the cubic Cr23C6-type (cF116, $Fm\bar{3}m$)] have been studied; the formation of the hypothetical “U3Ni20B6” and “Nb2Ni21B6” has been disproved. U2Ni21B6 [a = 10.6701(2) Å] crystallizes in the ordered W2Cr21C6-type, whereas Nb3–yNi20+yB6 [a = 10.5842(1) Å] adopts the Mg3Ni20B6-type. Ni in U2Ni21B6 can be substituted by U, leading to the solid solution U2+xNi21–xB6 (0 ≤ x ≤ 0.3); oppositely, Nb in Nb3Ni20B6 is partially replaced by Ni, forming the solution Nb3–yNi20+yB6 (0 ≤ y ≤ 0.5), none of them reaching the limit corresponding to the hypothetically ordered “U3Ni20B6” and “Nb2Ni21B6”. These results prompted us to investigate quaternary compounds U2–zNbzNi21B6 and UδNb3-δNi20B6: strong competition in the occupancy of the 4a and 8c sites by U, Nb, and Ni atoms has been observed, with the 4a site occupied by U/Ni atoms only and the 8c site filled by U/Nb atoms only. U2Ni21B6, U2.3Ni20.7B6, and Nb3Ni20B6 are Pauli paramagnets. Interestingly, Nb2.5Ni20.5B6 shows ferromagnetism with TC ≈ 11 K; the Curie–Weiss fit gives an effective magnetic moment of 2.78 μB/Ni, suggesting that all Ni atoms in the formula unit contribute to the total magnetic moment. The M(H) data at 2 K further corroborate the ferromagnetic behavior with a saturation moment of 10 μB/fu (≈0.49 μB/Ni). The magnetic moment of Ni at the 4a site induces a moment in all of the Ni atoms of the whole unit cell (32f and 48h sites), with all atoms ordering ferromagnetically at 11 K. Density functional theory (DFT) shows that the formation of U2Ni21B6 and Nb3Ni20B6 is energetically preferred. The various electronic states generating ferromagnetism on Nb2.5Ni20.5B6 and Pauli paramagnetism on U2Ni21B6 and Nb3Ni20B6 have been identified.},
doi = {10.1021/acs.inorgchem.9b01440},
journal = {Inorganic Chemistry},
number = 22,
volume = 58,
place = {United States},
year = {Fri Nov 01 00:00:00 EDT 2019},
month = {Fri Nov 01 00:00:00 EDT 2019}
}

Works referenced in this record:

The crystal structure of Cr23C6
journal, October 1972

  • Bowman, A. L.; Arnold, G. P.; Storms, E. K.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 28, Issue 10
  • DOI: 10.1107/S0567740872007526

Atom distributions in tau-carbide phases: Fe and Cr distributions in (Cr 23− x Fe x )C 6 with x = 0, 0·7 4 , 1·7 0 , 4·1 3 and 7·3 6
journal, June 1987


Magneto-optical properties of metallic ferromagnetic materials
journal, August 1983

  • Buschow, K. H. J.; van Engen, P. G.; Jongebreur, R.
  • Journal of Magnetism and Magnetic Materials, Vol. 38, Issue 1, p. 1-22
  • DOI: 10.1016/0304-8853(83)90097-5

Complex magnetic properties of Mn3Ni20P6 and ferromagnetic structure of the new isostructural compound Mn3Pd20P6
journal, January 2007

  • Eriksson, T.; Vennström, M.; Ronneteg, S.
  • Journal of Magnetism and Magnetic Materials, Vol. 308, Issue 2
  • DOI: 10.1016/j.jmmm.2006.05.016

Isothermal solid–liquid transitions in the (Ni,B)/ZrB2 system as revealed by sessile drop experiments
journal, March 2013


Single crystal studies on Co-containing τ-borides Co23−xMxB6 (M=Al, Ga, Sn, Ti, V, Ir) and the boron-rich τ-boride Co12.3Ir8.9B10.5
journal, March 2009

  • Kotzott, Dominik; Ade, Martin; Hillebrecht, Harald
  • Journal of Solid State Chemistry, Vol. 182, Issue 3
  • DOI: 10.1016/j.jssc.2008.10.036

Site preference and mechanical properties of Cr23−xTxC6 and Fe21T2C6 (T=Mo, W)
journal, October 2006


Crystallographic and physical properties of RE2−xNi21B6 (RE=Er, Yb and Lu)
journal, February 2009


Darstellung, Kristallstruktur und magnetische Eigenschaften von In2Ni21B6
journal, March 1999


The crystal structure of Ni21In2P6
journal, April 1990


The Crystal Structure of Ni 21 Sn 2 P 6
journal, February 2009

  • Schmetterer, Clemens; Wildner, Manfred; Giester, Gerald
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 635, Issue 2
  • DOI: 10.1002/zaac.200800409

B4 Tetrahedra for Aluminum Atoms—A Surprising Substitution inτ-Borides Ni20Al3B6 and Ni20AlB14
journal, April 1998


Single crystal studies on boron-rich τ-borides Ni23−xMxB6 (M=Zn, Ga, In, Sn, Ir)—The surprising occurrence of B4-tetraheda as a normal case?
journal, October 2010

  • Kotzott, Dominik; Ade, Martin; Hillebrecht, Harald
  • Journal of Solid State Chemistry, Vol. 183, Issue 10
  • DOI: 10.1016/j.jssc.2010.07.048

Crystal structure of the compounds Ce3Pd20Ge6 and Ce3Pd20Si6
journal, February 1994


Mg3Ni20P6 und Mn3Ni20P6 ? Zwei neue Phosphide mit Cr23C6-Struktur
journal, December 1992

  • Keimes, V.; Mewis, A.
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 618, Issue 12
  • DOI: 10.1002/zaac.19926180107

The tau-borides τ-(Fe0.54Ir0.46)20Fe3B6 and τ-(Co0.64Ir0.36)21Co0.16B4B6
journal, April 2010


Experimental investigations and thermodynamic modeling in the ZrB2Ni section of the BNiZr system
journal, April 2014


Stability and crystal chemistry of the ternary borides M 2 (Ni 21−x M x )B 6 (M   Ti, Zr, Hf)
journal, January 2016


Magnetism of Uranium Intermetallics
journal, January 1997


Itinerant 5f electrons in U2T21B6 (T=Ni and Co)
journal, January 2013


LAZY PULVERIX , a computer program, for calculating X-ray and neutron diffraction powder patterns
journal, February 1977


An empirical correction for absorption anisotropy
journal, January 1995

  • Blessing, R. H.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 51, Issue 1
  • DOI: 10.1107/S0108767394005726

A short history of SHELX
journal, December 2007

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 64, Issue 1, p. 112-122
  • DOI: 10.1107/S0108767307043930

Efficient linearization of the augmented plane-wave method
journal, October 2001


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Ab-initio calculation on electronic and optical properties of ThO2, UO2 and PuO2
journal, December 2018


A technique for relativistic spin-polarised calculations
journal, August 1977


Improved tetrahedron method for Brillouin-zone integrations
journal, June 1994


Atomic-environment classification of the chemical elements
journal, June 1993


Neue Boride mit NbCoB2-Typ
journal, July 1978

  • Steurer, Walter; Rogl, Peter; Nowotny, Hans
  • Monatshefte für Chemie - Chemical Monthly, Vol. 109, Issue 4
  • DOI: 10.1007/BF00907313

Applied Topological Analysis of Crystal Structures with the Program Package ToposPro
journal, May 2014

  • Blatov, Vladislav A.; Shevchenko, Alexander P.; Proserpio, Davide M.
  • Crystal Growth & Design, Vol. 14, Issue 7
  • DOI: 10.1021/cg500498k

Effect of pressure on the magneto-optical properties of bcc and bct iron
journal, March 2007


Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale
journal, October 2003