DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Parameter Estimation and Uncertainty Quantification for Systems Biology Models

Abstract

Mathematical models can provide quantitative insights into immunoreceptor signaling, and other biological processes, but require parameterization and uncertainty quantification before reliable predictions become possible. We review currently available methods and software tools to address these problems. We consider gradient-based and gradient-free methods for point estimation of parameter values, and methods of profile likelihood, bootstrapping, and Bayesian inference for uncertainty quantification. We consider recent and potential future applications of these methods to systems-level modeling of immune-related phenomena.

Authors:
 [1]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
National Institutes of Health (NIH); USDOE
OSTI Identifier:
1574756
Report Number(s):
LA-UR-19-26245
Journal ID: ISSN 2452-3100; TRN: US2001141
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Current Opinion in Systems Biology
Additional Journal Information:
Journal Volume: 18; Journal ID: ISSN 2452-3100
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; immune cell signaling; biological modeling

Citation Formats

Mitra, Eshan David, and Hlavacek, William Scott. Parameter Estimation and Uncertainty Quantification for Systems Biology Models. United States: N. p., 2019. Web. doi:10.1016/j.coisb.2019.10.006.
Mitra, Eshan David, & Hlavacek, William Scott. Parameter Estimation and Uncertainty Quantification for Systems Biology Models. United States. https://doi.org/10.1016/j.coisb.2019.10.006
Mitra, Eshan David, and Hlavacek, William Scott. Wed . "Parameter Estimation and Uncertainty Quantification for Systems Biology Models". United States. https://doi.org/10.1016/j.coisb.2019.10.006. https://www.osti.gov/servlets/purl/1574756.
@article{osti_1574756,
title = {Parameter Estimation and Uncertainty Quantification for Systems Biology Models},
author = {Mitra, Eshan David and Hlavacek, William Scott},
abstractNote = {Mathematical models can provide quantitative insights into immunoreceptor signaling, and other biological processes, but require parameterization and uncertainty quantification before reliable predictions become possible. We review currently available methods and software tools to address these problems. We consider gradient-based and gradient-free methods for point estimation of parameter values, and methods of profile likelihood, bootstrapping, and Bayesian inference for uncertainty quantification. We consider recent and potential future applications of these methods to systems-level modeling of immune-related phenomena.},
doi = {10.1016/j.coisb.2019.10.006},
journal = {Current Opinion in Systems Biology},
number = ,
volume = 18,
place = {United States},
year = {2019},
month = {11}
}

Works referenced in this record:

T cell receptor signalling networks: branched, diversified and bounded
journal, March 2013

  • Brownlie, Rebecca J.; Zamoyska, Rose
  • Nature Reviews Immunology, Vol. 13, Issue 4
  • DOI: 10.1038/nri3403

B cell antigen receptor signaling 101
journal, July 2004


Molecular regulation of mast cell activation
journal, June 2006


A Perspective on the Role of Computational Models in Immunology
journal, April 2017


COPASI--a COmplex PAthway SImulator
journal, October 2006


Data2Dynamics: a modeling environment tailored to parameter estimation in dynamical systems: Fig. 1.
journal, July 2015


Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks
journal, January 2017


PESTO: Parameter EStimation TOolbox
journal, October 2017


PyBioNetFit and the Biological Property Specification Language
journal, September 2019


From word models to executable models of signaling networks using automated assembly
journal, November 2017

  • Gyori, Benjamin M.; Bachman, John A.; Subramanian, Kartik
  • Molecular Systems Biology, Vol. 13, Issue 11
  • DOI: 10.15252/msb.20177651

INDRA-IPM: interactive pathway modeling using natural language with automated assembly
journal, May 2019


The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models
journal, March 2003


BioNetGen 2.2: advances in rule-based modeling
journal, July 2016


Stochastic Simulation of Chemical Kinetics
journal, May 2007


Generalizing Gillespie’s Direct Method to Enable Network-Free Simulations
journal, March 2018

  • Suderman, Ryan; Mitra, Eshan D.; Lin, Yen Ting
  • Bulletin of Mathematical Biology, Vol. 81, Issue 8
  • DOI: 10.1007/s11538-018-0418-2

Efficient modeling, simulation and coarse-graining of biological complexity with NFsim
journal, December 2010

  • Sneddon, Michael W.; Faeder, James R.; Emonet, Thierry
  • Nature Methods, Vol. 8, Issue 2
  • DOI: 10.1038/nmeth.1546

A Limited Memory Algorithm for Bound Constrained Optimization
journal, September 1995

  • Byrd, Richard H.; Lu, Peihuang; Nocedal, Jorge
  • SIAM Journal on Scientific Computing, Vol. 16, Issue 5
  • DOI: 10.1137/0916069

Efficient gradient computation for dynamical models
journal, September 2014


Correction: Lessons Learned from Quantitative Dynamical Modeling in Systems Biology
journal, December 2013


Benchmark problems for dynamic modeling of intracellular processes
journal, January 2019


Identification of Nascent Memory CD8 T Cells and Modeling of Their Ontogeny
journal, March 2017


FATODE: A Library for Forward, Adjoint, and Tangent Linear Integration of ODEs
journal, January 2014

  • Zhang, Hong; Sandu, Adrian
  • SIAM Journal on Scientific Computing, Vol. 36, Issue 5
  • DOI: 10.1137/130912335

Adjoint Sensitivity Analysis for Differential-Algebraic Equations: The Adjoint DAE System and Its Numerical Solution
journal, January 2003

  • Cao, Yang; Li, Shengtai; Petzold, Linda
  • SIAM Journal on Scientific Computing, Vol. 24, Issue 3
  • DOI: 10.1137/S1064827501380630

Efficient Parameter Estimation Enables the Prediction of Drug Response Using a Mechanistic Pan-Cancer Pathway Model
journal, December 2018


Modeling for (physical) biologists: an introduction to the rule-based approach
journal, July 2015


A survey on optimization metaheuristics
journal, July 2013


Benchmarking optimization methods for parameter estimation in large kinetic models
journal, August 2018


Optimization by Simulated Annealing
journal, May 1983


Enhanced parallel Differential Evolution algorithm for problems in computational systems biology
journal, August 2015


A robust parallel algorithm of the particle swarm optimization method for large dimensional engineering problems
journal, July 2015

  • Moraes, Antonio O. S.; Mitre, João F.; Lage, Paulo L. C.
  • Applied Mathematical Modelling, Vol. 39, Issue 14
  • DOI: 10.1016/j.apm.2014.12.034

Parameter estimation in large-scale systems biology models: a parallel and self-adaptive cooperative strategy
journal, January 2017


Phosphorylation Site Dynamics of Early T-cell Receptor Signaling
journal, August 2014


Dynamic Optimization of Nonlinear Processes with an Enhanced Scatter Search Method
journal, May 2009

  • Egea, Jose A.; Balsa-Canto, Eva; García, María-Sonia G.
  • Industrial & Engineering Chemistry Research, Vol. 48, Issue 9
  • DOI: 10.1021/ie801717t

A Simplex Method for Function Minimization
journal, January 1965


A Parallel Implementation of the Simplex Function Minimization Routine
journal, June 2007


Kinetic Analysis of a Molecular Model of the Budding Yeast Cell Cycle
journal, January 2000

  • Chen, Katherine C.; Csikasz-Nagy, Attila; Gyorffy, Bela
  • Molecular Biology of the Cell, Vol. 11, Issue 1
  • DOI: 10.1091/mbc.11.1.369

Integrative Analysis of Cell Cycle Control in Budding Yeast
journal, August 2004

  • Chen, Katherine C.; Calzone, Laurence; Csikasz-Nagy, Attila
  • Molecular Biology of the Cell, Vol. 15, Issue 8
  • DOI: 10.1091/mbc.e03-11-0794

Optimization and model reduction in the high dimensional parameter space of a budding yeast cell cycle model
journal, January 2013

  • Oguz, Cihan; Laomettachit, Teeraphan; Chen, Katherine C.
  • BMC Systems Biology, Vol. 7, Issue 1
  • DOI: 10.1186/1752-0509-7-53

Quantitative model analysis with diverse biological data: Applications in developmental pattern formation
journal, July 2013


Model-Based Analysis for Qualitative Data: An Application in Drosophila Germline Stem Cell Regulation
journal, March 2014


Using both qualitative and quantitative data in parameter identification for systems biology models
journal, September 2018


Constraint-handling in nature-inspired numerical optimization: Past, present and future
journal, December 2011


Timescale Separation of Positive and Negative Signaling Creates History-Dependent Responses to IgE Receptor Stimulation
journal, November 2017


Profile likelihood in systems biology
journal, May 2013

  • Kreutz, Clemens; Raue, Andreas; Kaschek, Daniel
  • FEBS Journal, Vol. 280, Issue 11
  • DOI: 10.1111/febs.12276

Likelihood based observability analysis and confidence intervals for predictions of dynamic models
journal, January 2012


Fast integration-based prediction bands for ordinary differential equation models
journal, December 2015


Parallel tempering: Theory, applications, and new perspectives
journal, January 2005

  • Earl, David J.; Deem, Michael W.
  • Physical Chemistry Chemical Physics, Vol. 7, Issue 23
  • DOI: 10.1039/b509983h

Inference from Iterative Simulation Using Multiple Sequences
journal, November 1992


COPASI and its applications in biotechnology
journal, November 2017


MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics
journal, January 2014


Properties of cell death models calibrated and compared using Bayesian approaches
journal, January 2013

  • Eydgahi, Hoda; Chen, William W.; Muhlich, Jeremy L.
  • Molecular Systems Biology, Vol. 9, Issue 1
  • DOI: 10.1038/msb.2012.69

Programming biological models in Python using PySB
journal, January 2013

  • Lopez, Carlos F.; Muhlich, Jeremy L.; Bachman, John A.
  • Molecular Systems Biology, Vol. 9, Issue 1
  • DOI: 10.1038/msb.2013.1

Analysis of a Generic Model of Eukaryotic Cell-Cycle Regulation
journal, June 2006

  • Csikász-Nagy, Attila; Battogtokh, Dorjsuren; Chen, Katherine C.
  • Biophysical Journal, Vol. 90, Issue 12
  • DOI: 10.1529/biophysj.106.081240

Photoconversion and Nuclear Trafficking Cycles Determine Phytochrome A's Response Profile to Far-Red Light
journal, September 2011


From START to FINISH: computational analysis of cell cycle control in budding yeast
journal, December 2015

  • Kraikivski, Pavel; Chen, Katherine C.; Laomettachit, Teeraphan
  • npj Systems Biology and Applications, Vol. 1, Issue 1
  • DOI: 10.1038/npjsba.2015.16

Effect of Spatial Inhomogeneities on the Membrane Surface on Receptor Dimerization and Signal Initiation
journal, August 2016

  • Kerketta, Romica; Halász, Ádám M.; Steinkamp, Mara P.
  • Frontiers in Cell and Developmental Biology, Vol. 4
  • DOI: 10.3389/fcell.2016.00081

Detailed Simulations of Cell Biology with Smoldyn 2.1
journal, March 2010


Fast Monte Carlo Simulation Methods for Biological Reaction-Diffusion Systems in Solution and on Surfaces
journal, January 2008

  • Kerr, Rex A.; Bartol, Thomas M.; Kaminsky, Boris
  • SIAM Journal on Scientific Computing, Vol. 30, Issue 6
  • DOI: 10.1137/070692017