DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tailoring the Pore Size of a Polypropylene Separator with a Polymer Having Intrinsic Nanoporosity for Suppressing the Polysulfide Shuttle in Lithium–Sulfur Batteries

Abstract

Abstract Lithium–sulfur (Li–S) batteries are being considered as one of the most promising candidates for the development of next‐generation energy storage technologies. Although much progress has been made over the past decade, the development of Li–S batteries is still held back by a crucial polysulfide‐shuttle problem. To address this critical issue, an approach to reduce the pore size of the separator is presented here, to prevent the penetration of soluble polysulfide species. A polymer with intrinsic nanoporosity (PIN) is developed within the micrometer‐scale pores of a polypropylene separator. The framework of polypropylene acts as a skeleton to sustain reliable mechanical properties with the thin membrane. Upon the formation of PIN in the pores, the polypropylene separator maintains its thickness. With the thin PIN–polypropylene membrane, the Li–S cells can be operated with a relatively high sulfur loading. The PIN allows the transport of Li + ions, but suppresses the penetration of the polysulfide species. The Li–S batteries with the PIN‐modified polypropylene separator exhibit enhanced cycling performance.

Authors:
 [1];  [2];  [2]; ORCiD logo [1]
  1. Univ. of Texas, Austin, TX (United States). Materials Science & Engineering Program. Texas Materials Inst.
  2. Univ. of Texas, Austin, TX (United States). Dept. of Mechanical Engineering
Publication Date:
Research Org.:
Univ. of Texas, Austin, TX (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1801672
Alternate Identifier(s):
OSTI ID: 1574510
Grant/Contract Number:  
SC0005397
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 10; Journal Issue: 1; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; polysulfide shuttle; polymer separator; nanoporosity; lithium–sulfur batteries; cycling performance

Citation Formats

Yu, Xingwen, Wu, Hao, Koo, Joseph H., and Manthiram, Arumugam. Tailoring the Pore Size of a Polypropylene Separator with a Polymer Having Intrinsic Nanoporosity for Suppressing the Polysulfide Shuttle in Lithium–Sulfur Batteries. United States: N. p., 2019. Web. doi:10.1002/aenm.201902872.
Yu, Xingwen, Wu, Hao, Koo, Joseph H., & Manthiram, Arumugam. Tailoring the Pore Size of a Polypropylene Separator with a Polymer Having Intrinsic Nanoporosity for Suppressing the Polysulfide Shuttle in Lithium–Sulfur Batteries. United States. https://doi.org/10.1002/aenm.201902872
Yu, Xingwen, Wu, Hao, Koo, Joseph H., and Manthiram, Arumugam. Mon . "Tailoring the Pore Size of a Polypropylene Separator with a Polymer Having Intrinsic Nanoporosity for Suppressing the Polysulfide Shuttle in Lithium–Sulfur Batteries". United States. https://doi.org/10.1002/aenm.201902872. https://www.osti.gov/servlets/purl/1801672.
@article{osti_1801672,
title = {Tailoring the Pore Size of a Polypropylene Separator with a Polymer Having Intrinsic Nanoporosity for Suppressing the Polysulfide Shuttle in Lithium–Sulfur Batteries},
author = {Yu, Xingwen and Wu, Hao and Koo, Joseph H. and Manthiram, Arumugam},
abstractNote = {Abstract Lithium–sulfur (Li–S) batteries are being considered as one of the most promising candidates for the development of next‐generation energy storage technologies. Although much progress has been made over the past decade, the development of Li–S batteries is still held back by a crucial polysulfide‐shuttle problem. To address this critical issue, an approach to reduce the pore size of the separator is presented here, to prevent the penetration of soluble polysulfide species. A polymer with intrinsic nanoporosity (PIN) is developed within the micrometer‐scale pores of a polypropylene separator. The framework of polypropylene acts as a skeleton to sustain reliable mechanical properties with the thin membrane. Upon the formation of PIN in the pores, the polypropylene separator maintains its thickness. With the thin PIN–polypropylene membrane, the Li–S cells can be operated with a relatively high sulfur loading. The PIN allows the transport of Li + ions, but suppresses the penetration of the polysulfide species. The Li–S batteries with the PIN‐modified polypropylene separator exhibit enhanced cycling performance.},
doi = {10.1002/aenm.201902872},
journal = {Advanced Energy Materials},
number = 1,
volume = 10,
place = {United States},
year = {Mon Nov 18 00:00:00 EST 2019},
month = {Mon Nov 18 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 62 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Review on High-Loading and High-Energy Lithium-Sulfur Batteries
journal, May 2017

  • Peng, Hong-Jie; Huang, Jia-Qi; Cheng, Xin-Bing
  • Advanced Energy Materials, Vol. 7, Issue 24
  • DOI: 10.1002/aenm.201700260

Pathways for practical high-energy long-cycling lithium metal batteries
journal, February 2019


Perspective: The energy-storage revolution
journal, October 2015


Energy storage: Power revolution
journal, October 2015


Addressing the Grand Challenges in Energy Storage
journal, February 2013


Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries
journal, October 2017

  • Eshetu, Gebrekidan Gebresilassie; Judez, Xabier; Li, Chunmei
  • Angewandte Chemie International Edition, Vol. 56, Issue 48
  • DOI: 10.1002/anie.201709305

All-Solid-State Lithium-Sulfur Battery Based on a Nanoconfined LiBH 4 Electrolyte
journal, January 2016

  • Das, Supti; Ngene, Peter; Norby, Poul
  • Journal of The Electrochemical Society, Vol. 163, Issue 9
  • DOI: 10.1149/2.0771609jes

Simultaneously Inhibiting Lithium Dendrites Growth and Polysulfides Shuttle by a Flexible MOF-Based Membrane in Li-S Batteries
journal, October 2018


Toward Improving the Areal Energy Density of Lithium–Sulfur Batteries with Ultramicroporous Carbon–Sulfur Composite Electrodes
journal, May 2019

  • Helen, M.; Fichtner, Maximilian; Reddy, M. Anji
  • Energy Technology, Vol. 7, Issue 12
  • DOI: 10.1002/ente.201900183

TECHNOLOGY: Betrayed by Batteries?
journal, February 2001


Review of energy storage systems for electric vehicle applications: Issues and challenges
journal, March 2017


All Solid-State Lithium–Sulfur Battery Using a Glass-Type P 2 S 5 –Li 2 S Electrolyte: Benefits on Anode Kinetics
journal, January 2015

  • Yamada, Takanobu; Ito, Seitaro; Omoda, Ryo
  • Journal of The Electrochemical Society, Vol. 162, Issue 4
  • DOI: 10.1149/2.0441504jes

Enhanced Interfacial Stability of Hybrid-Electrolyte Lithium-Sulfur Batteries with a Layer of Multifunctional Polymer with Intrinsic Nanoporosity
journal, November 2018

  • Yu, Xingwen; Manthiram, Arumugam
  • Advanced Functional Materials, Vol. 29, Issue 3
  • DOI: 10.1002/adfm.201805996

Transformation of Rusty Stainless-Steel Meshes into Stable, Low-Cost, and Binder-Free Cathodes for High-Performance Potassium-Ion Batteries
journal, June 2017

  • Zhu, Yun-hai; Yin, Yan-bin; Yang, Xu
  • Angewandte Chemie International Edition, Vol. 56, Issue 27
  • DOI: 10.1002/anie.201702711

Sizing and applications of battery energy storage technologies in smart grid system: A review
journal, January 2019

  • Sufyan, M.; Rahim, N. A.; Aman, M. M.
  • Journal of Renewable and Sustainable Energy, Vol. 11, Issue 1
  • DOI: 10.1063/1.5063866

Hybrid Lithium–Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte
journal, July 2015

  • Yu, Xingwen; Bi, Zhonghe; Zhao, Feng
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 30
  • DOI: 10.1021/acsami.5b04209

A Polysulfide-Immobilizing Polymer Retards the Shuttling of Polysulfide Intermediates in Lithium-Sulfur Batteries
journal, September 2018


A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries
journal, January 2017

  • Peng, Hong-Jie; Huang, Jia-Qi; Zhang, Qiang
  • Chemical Society Reviews, Vol. 46, Issue 17
  • DOI: 10.1039/C7CS00139H

A one-side hydrophilic polypropylene membrane prepared by plasma treatment
journal, November 1990


Challenges and Prospects of Lithium–Sulfur Batteries
journal, June 2012

  • Manthiram, Arumugam; Fu, Yongzhu; Su, Yu-Sheng
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300179v

Evidence of covalent synergy in silicon–sulfur–graphene yielding highly efficient and long-life lithium-ion batteries
journal, October 2015

  • Hassan, Fathy M.; Batmaz, Rasim; Li, Jingde
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9597

Polymer lithium–sulfur batteries with a Nafion membrane and an advanced sulfur electrode
journal, January 2015

  • Yu, Xingwen; Joseph, Jorphin; Manthiram, Arumugam
  • Journal of Materials Chemistry A, Vol. 3, Issue 30
  • DOI: 10.1039/C5TA04289E

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Rechargeable Lithium–Sulfur Batteries
journal, July 2014

  • Manthiram, Arumugam; Fu, Yongzhu; Chung, Sheng-Heng
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500062v

Controlling the polysulfide diffusion in lithium-sulfur batteries with a polymer membrane with intrinsic nanoporosity
journal, March 2018


Material design and engineering of next-generation flow-battery technologies
journal, November 2016


Designing high-energy lithium–sulfur batteries
journal, January 2016

  • Seh, Zhi Wei; Sun, Yongming; Zhang, Qianfan
  • Chemical Society Reviews, Vol. 45, Issue 20
  • DOI: 10.1039/C5CS00410A

The Relationship between the Relative Solvating Power of Electrolytes and Shuttling Effect of Lithium Polysulfides in Lithium-Sulfur Batteries
journal, August 2018

  • Su, Chi-Cheung; He, Meinan; Amine, Rachid
  • Angewandte Chemie International Edition, Vol. 57, Issue 37
  • DOI: 10.1002/anie.201807367

Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes
journal, September 2016


High-voltage positive electrode materials for lithium-ion batteries
journal, January 2017

  • Li, Wangda; Song, Bohang; Manthiram, Arumugam
  • Chemical Society Reviews, Vol. 46, Issue 10
  • DOI: 10.1039/C6CS00875E

High-Energy-Density Flexible Potassium-Ion Battery Based on Patterned Electrodes
journal, April 2018


Renewables: Share data on wind energy
journal, January 2016


Hydrophilization of microporous polypropylene Celgard® membranes by the chemical modification technique
journal, June 1996


The Wind at Our Backs
journal, May 2012


Batteries and fuel cells for emerging electric vehicle markets
journal, April 2018


Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries
journal, January 2017


Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind
journal, July 2011

  • McIntosh, Scott W.; De Pontieu, Bart; Carlsson, Mats
  • Nature, Vol. 475, Issue 7357
  • DOI: 10.1038/nature10235

Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries
journal, July 2015

  • Helen, M.; Reddy, M. Anji; Diemant, Thomas
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep12146

Electrode–Electrolyte Interfaces in Lithium–Sulfur Batteries with Liquid or Inorganic Solid Electrolytes
journal, October 2017


Can Civilization (at Least the U.K.) Run Sustainably?
journal, June 2009


Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer
journal, January 2012

  • Su, Yu-Sheng; Manthiram, Arumugam
  • Nature Communications, Vol. 3, Article No. 1166
  • DOI: 10.1038/ncomms2163

Interlayer Material Selection for Lithium-Sulfur Batteries
journal, February 2019


A Nickel Metal Hydride Battery for Electric Vehicles
journal, April 1993


Lithium sulfur batteries, a mechanistic review
journal, January 2015

  • Wild, M.; O'Neill, L.; Zhang, T.
  • Energy & Environmental Science, Vol. 8, Issue 12
  • DOI: 10.1039/C5EE01388G

Energy storage wrapped up
journal, May 2014


Micropores of pure nanographite spheres for long cycle life and high-rate lithium–sulfur batteries
journal, January 2018

  • Liao, Kexuan; Chen, Shuting; Wei, Huanhuan
  • Journal of Materials Chemistry A, Vol. 6, Issue 45
  • DOI: 10.1039/C8TA08361D

Lithium Sulfur Battery: Oxidation/Reduction Mechanisms of Polysulfides in THF Solutions
journal, January 1988

  • Yamin, H.; Gorenshtein, A.; Penciner, J.
  • Journal of The Electrochemical Society, Vol. 135, Issue 5, p. 1045-1048
  • DOI: 10.1149/1.2095868

A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur
journal, April 2016

  • Fotouhi, Abbas; Auger, Daniel J.; Propp, Karsten
  • Renewable and Sustainable Energy Reviews, Vol. 56
  • DOI: 10.1016/j.rser.2015.12.009

Suppression of the polysulfide-shuttle behavior in Li–S batteries through the development of a facile functional group on the polypropylene separator
journal, January 2016

  • Yu, Xingwen; Joseph, Jorphin; Manthiram, Arumugam
  • Materials Horizons, Vol. 3, Issue 4
  • DOI: 10.1039/C6MH00043F

Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries
journal, January 2014

  • Huang, Jia-Qi; Zhang, Qiang; Peng, Hong-Jie
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42223B

Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium–sulfur batteries
journal, January 2014

  • Liao, Huaping; Ding, Huimin; Li, Bijian
  • J. Mater. Chem. A, Vol. 2, Issue 23
  • DOI: 10.1039/C4TA00523F

Smart grids: The energy storage problem
journal, January 2010


Energy storage: Applications and challenges
journal, January 2014


A class of polysulfide catholytes for lithium–sulfur batteries: energy density, cyclability, and voltage enhancement
journal, January 2015

  • Yu, Xingwen; Manthiram, Arumugam
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 3
  • DOI: 10.1039/C4CP04895D

Polysulfide-Shuttle Control in Lithium-Sulfur Batteries with a Chemically/Electrochemically Compatible NaSICON-Type Solid Electrolyte
journal, August 2016

  • Yu, Xingwen; Bi, Zhonghe; Zhao, Feng
  • Advanced Energy Materials, Vol. 6, Issue 24
  • DOI: 10.1002/aenm.201601392

A Review of Functional Binders in Lithium-Sulfur Batteries
journal, October 2018

  • Yuan, Hong; Huang, Jia-Qi; Peng, Hong-Jie
  • Advanced Energy Materials, Vol. 8, Issue 31
  • DOI: 10.1002/aenm.201802107

Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries
journal, October 2017

  • Eshetu, Gebrekidan Gebresilassie; Judez, Xabier; Li, Chunmei
  • Angewandte Chemie, Vol. 129, Issue 48
  • DOI: 10.1002/ange.201709305

The Relationship between the Relative Solvating Power of Electrolytes and Shuttling Effect of Lithium Polysulfides in Lithium-Sulfur Batteries
journal, August 2018


Inhibiting Polysulfide Shuttling with a Graphene Composite Separator for Highly Robust Lithium-Sulfur Batteries
journal, October 2018