skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on October 11, 2020

Title: Structure and electronic properties of rare earth DOBDC metal–organic-frameworks

Abstract

In our report, we apply density functional theory (DFT) to investigate rare-earth metal organic frameworks (RE-MOFs), RE 123-OH) 16(C 8O 6H 4) 8(C 8O 6H 5) 4 (RE = Y, Eu, Tb, Yb), and characterize the level of theory needed to accurately predict structural and electronic properties in MOF materials with 4f-electrons. A two-step calculation approach of geometry optimization with spin-restricted DFT and large core potential (LCPs), and detailed electronic structures with spin-unrestricted DFT with a full valence potential + Hubbard U correction is investigated. Spin-restricted DFT with LCPs resulted in good agreement between experimental lattice parameters and optimized geometries, while a full valence potential is necessary for accurate representation of the electronic structure. The electronic structure of Eu-DOBDC MOF suggested a strong dependence on the treatment of highly localized 4f-electrons and spin polarization, as well as variation within a range of Hubbard corrections (U = 1–9 eV). For Hubbard corrected spin-unrestricted calculations, a U value of 1–4 eV maintains the non-metallic character of the band gap with slight deviations in f-orbital energetics. When compared with experimentally reported results, the importance of the full valence calculation and the Hubbard correction in correctly predicting the electronic structure is highlighted.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1574447
Alternate Identifier(s):
OSTI ID: 1570052
Report Number(s):
SAND-2019-12496J
Journal ID: ISSN 1463-9076; PPCPFQ; 680399
Grant/Contract Number:  
AC04-94AL85000; SC0012577; NA0003525; UNCAGE-ME Energy Frontier Research Center (EFRC) A; #DE-SC0012577
Resource Type:
Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP (Print)
Additional Journal Information:
Journal Name: Physical Chemistry Chemical Physics. PCCP (Print); Journal Volume: 21; Journal Issue: 41; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Vogel, Dayton J., Sava Gallis, Dorina F., Nenoff, Tina M., and Rimsza, Jessica M. Structure and electronic properties of rare earth DOBDC metal–organic-frameworks. United States: N. p., 2019. Web. doi:10.1039/C9CP04038B.
Vogel, Dayton J., Sava Gallis, Dorina F., Nenoff, Tina M., & Rimsza, Jessica M. Structure and electronic properties of rare earth DOBDC metal–organic-frameworks. United States. doi:10.1039/C9CP04038B.
Vogel, Dayton J., Sava Gallis, Dorina F., Nenoff, Tina M., and Rimsza, Jessica M. Fri . "Structure and electronic properties of rare earth DOBDC metal–organic-frameworks". United States. doi:10.1039/C9CP04038B.
@article{osti_1574447,
title = {Structure and electronic properties of rare earth DOBDC metal–organic-frameworks},
author = {Vogel, Dayton J. and Sava Gallis, Dorina F. and Nenoff, Tina M. and Rimsza, Jessica M.},
abstractNote = {In our report, we apply density functional theory (DFT) to investigate rare-earth metal organic frameworks (RE-MOFs), RE12(μ3-OH)16(C8O6H4)8(C8O6H5)4 (RE = Y, Eu, Tb, Yb), and characterize the level of theory needed to accurately predict structural and electronic properties in MOF materials with 4f-electrons. A two-step calculation approach of geometry optimization with spin-restricted DFT and large core potential (LCPs), and detailed electronic structures with spin-unrestricted DFT with a full valence potential + Hubbard U correction is investigated. Spin-restricted DFT with LCPs resulted in good agreement between experimental lattice parameters and optimized geometries, while a full valence potential is necessary for accurate representation of the electronic structure. The electronic structure of Eu-DOBDC MOF suggested a strong dependence on the treatment of highly localized 4f-electrons and spin polarization, as well as variation within a range of Hubbard corrections (U = 1–9 eV). For Hubbard corrected spin-unrestricted calculations, a U value of 1–4 eV maintains the non-metallic character of the band gap with slight deviations in f-orbital energetics. When compared with experimentally reported results, the importance of the full valence calculation and the Hubbard correction in correctly predicting the electronic structure is highlighted.},
doi = {10.1039/C9CP04038B},
journal = {Physical Chemistry Chemical Physics. PCCP (Print)},
number = 41,
volume = 21,
place = {United States},
year = {2019},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on October 11, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Multifunctional, Tunable Metal–Organic Framework Materials Platform for Bioimaging Applications
journal, June 2017

  • Sava Gallis, Dorina F.; Rohwer, Lauren E. S.; Rodriguez, Mark A.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 27
  • DOI: 10.1021/acsami.7b05859

Ab initio calculation of energy levels of trivalent lanthanide ions
journal, January 2018

  • Freidzon, Alexandra Ya.; Kurbatov, Ilia A.; Vovna, Vitaliy I.
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 21
  • DOI: 10.1039/C7CP08366A

Theoretical design of highly luminescent europium (III) complexes: A factorial study
journal, January 2011

  • Dutra, José Diogo L.; Gimenez, Iara F.; Junior, Nivan B. da Costa
  • Journal of Photochemistry and Photobiology A: Chemistry, Vol. 217, Issue 2-3
  • DOI: 10.1016/j.jphotochem.2010.11.011

On The Density Functional Theory Treatment of Lanthanide Coordination Compounds: A Comparative Study in a Series of Cu–Ln (Ln = Gd, Tb, Lu) Binuclear Complexes
journal, July 2017


Luminescence properties and DFT calculations of lanthanide(III) complexes (Ln = La, Nd, Sm, Eu, Gd, Tb, Dy) with 2,6-bis(5-methyl-benzimidazol-2-yl)pyridine
journal, July 2018

  • Cruz-Navarro, Antonio; Rivera, José María; Durán-Hernández, Jesús
  • Journal of Molecular Structure, Vol. 1164
  • DOI: 10.1016/j.molstruc.2018.03.065

Assessment of Density Functionals for Computing Thermodynamic Properties of Lanthanide Complexes
journal, August 2017

  • Jaoul, Arnaud; Nocton, Grégory; Clavaguéra, Carine
  • ChemPhysChem, Vol. 18, Issue 19
  • DOI: 10.1002/cphc.201700629

Efficacy of Density Functionals and Relativistic Effective Core Potentials for Lanthanide-Containing Species: The Ln54 Molecule Set
journal, May 2017

  • Aebersold, Lucas E.; Yuwono, Stephen H.; Schoendorff, George
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 6
  • DOI: 10.1021/acs.jctc.6b01223

A systematic evaluation of the role of lanthanide elements in functional complex oxides; implications for energy conversion devices
journal, January 2018

  • Wu, Ji; Fujii, Kotaro; Yashima, Masatomo
  • Journal of Materials Chemistry A, Vol. 6, Issue 25
  • DOI: 10.1039/C8TA01191E

Assessing Hubbard-corrected AM05+U and PBEsol+U density functionals for strongly correlated oxides CeO 2 and Ce 2 O 3
journal, January 2016

  • Weck, Philippe F.; Kim, Eunja
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 38
  • DOI: 10.1039/C6CP05479J

Density functional calculations of lanthanide oxides
journal, June 1995

  • Wang, S. G.; Pan, D. K.; Schwarz, W. H. E.
  • The Journal of Chemical Physics, Vol. 102, Issue 23
  • DOI: 10.1063/1.468796

Performance of DFT+ U method for prediction of structural and thermodynamic parameters of monazite-type ceramics
journal, April 2014

  • Blanca Romero, Ariadna; Kowalski, Piotr M.; Beridze, George
  • Journal of Computational Chemistry, Vol. 35, Issue 18
  • DOI: 10.1002/jcc.23618

Mechanical properties of metal dihydrides
journal, February 2016

  • Schultz, Peter A.; Snow, Clark S.
  • Modelling and Simulation in Materials Science and Engineering, Vol. 24, Issue 3
  • DOI: 10.1088/0965-0393/24/3/035005

Catalysis by Metal Organic Frameworks: Perspective and Suggestions for Future Research
journal, January 2019


The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Recent advances in gas storage and separation using metal–organic frameworks
journal, March 2018


Flue gas treatment via CO2 adsorption
journal, July 2011

  • Sayari, Abdelhamid; Belmabkhout, Youssef; Serna-Guerrero, Rodrigo
  • Chemical Engineering Journal, Vol. 171, Issue 3
  • DOI: 10.1016/j.cej.2011.02.007

Metal–Organic Frameworks for Separations
journal, September 2011

  • Li, Jian-Rong; Sculley, Julian; Zhou, Hong-Cai
  • Chemical Reviews, Vol. 112, Issue 2, p. 869-932
  • DOI: 10.1021/cr200190s

Zeolitic Imidazolate Frameworks: Next-Generation Materials for Energy-Efficient Gas Separations
journal, October 2014

  • Pimentel, Brian R.; Parulkar, Aamena; Zhou, Er-kang
  • ChemSusChem, Vol. 7, Issue 12
  • DOI: 10.1002/cssc.201402647

Computational Screening of Metal–Organic Frameworks for Membrane-Based CO 2 /N 2 /H 2 O Separations: Best Materials for Flue Gas Separation
journal, March 2018


SO x /NO x Removal from Flue Gas Streams by Solid Adsorbents: A Review of Current Challenges and Future Directions
journal, August 2015


Efficient MOF-based degradation of organophosphorus compounds in non-aqueous environments
journal, January 2018

  • Sava Gallis, Dorina F.; Harvey, Jacob A.; Pearce, Charles J.
  • Journal of Materials Chemistry A, Vol. 6, Issue 7
  • DOI: 10.1039/C7TA10794C

Acid Gas Stability of Zeolitic Imidazolate Frameworks: Generalized Kinetic and Thermodynamic Characteristics
journal, May 2018


Insights into the Stability of Zeolitic Imidazolate Frameworks in Humid Acidic Environments from First-Principles Calculations
journal, February 2018

  • Han, Chu; Zhang, Chenyang; Tymińska, Nina
  • The Journal of Physical Chemistry C, Vol. 122, Issue 8
  • DOI: 10.1021/acs.jpcc.7b12058

Stability of Zeolitic Imidazolate Frameworks in NO 2
journal, January 2019

  • Bhattacharyya, Souryadeep; Han, Rebecca; Joshi, Jayraj N.
  • The Journal of Physical Chemistry C, Vol. 123, Issue 4
  • DOI: 10.1021/acs.jpcc.8b11377

Biocompatible MOFs with high absolute quantum yield for bioimaging in the second near infrared window
journal, January 2018

  • Sava Gallis, Dorina F.; Butler, Kimberly S.; Rohwer, Lauren E. S.
  • CrystEngComm, Vol. 20, Issue 39
  • DOI: 10.1039/C8CE00909K

Zr-based metal–organic frameworks: design, synthesis, structure, and applications
journal, January 2016

  • Bai, Yan; Dou, Yibo; Xie, Lin-Hua
  • Chemical Society Reviews, Vol. 45, Issue 8
  • DOI: 10.1039/C5CS00837A

In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks
journal, January 2017

  • Plonka, Anna M.; Wang, Qi; Gordon, Wesley O.
  • Journal of the American Chemical Society, Vol. 139, Issue 2
  • DOI: 10.1021/jacs.6b11373

Towards metal–organic framework based field effect chemical sensors: UiO-66-NH 2 for nerve agent detection
journal, January 2016

  • Stassen, I.; Bueken, B.; Reinsch, H.
  • Chemical Science, Vol. 7, Issue 9
  • DOI: 10.1039/C6SC00987E

NMR Spectroscopy Reveals Adsorbate Binding Sites in the Metal–Organic Framework UiO-66(Zr)
journal, March 2018

  • Nandy, Aditya; Forse, Alexander C.; Witherspoon, Velencia J.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 15
  • DOI: 10.1021/acs.jpcc.7b12628

Defect and Linker Effects on the Binding of Organophosphorous Compounds in UiO-66 and Rare-Earth MOFs
journal, November 2018

  • Harvey, Jacob A.; Greathouse, Jeffery A.; Sava Gallis, Dorina F.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 47
  • DOI: 10.1021/acs.jpcc.8b06198

Ab initio study of TaON, an active photocatalyst under visible light irradiation
journal, January 2014

  • Reshak, A. H.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 22
  • DOI: 10.1039/c4cp00285g

Photoelectrical properties and the electronic structure of Tl1−xIn1−xSnxSe2 (x = 0, 0.1, 0.2, 0.25) single crystalline alloys
journal, January 2013

  • Davydyuk, G. E.; Khyzhun, O. Y.; Reshak, A. H.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 18
  • DOI: 10.1039/c3cp50836f

Dispersion of linear and nonlinear optical susceptibilities and the hyperpolarizability of 3-methyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole
journal, January 2011

  • Reshak, Ali. H.; Stys, D.; Auluck, S.
  • Phys. Chem. Chem. Phys., Vol. 13, Issue 7
  • DOI: 10.1039/C0CP01601B

Thermoelectric properties for AA- and AB-stacking of a carbon nitride polymorph (C 3 N 4 )
journal, January 2014


Ionization Energies of Lanthanides
journal, August 2010

  • Lang, Peter F.; Smith, Barry C.
  • Journal of Chemical Education, Vol. 87, Issue 8
  • DOI: 10.1021/ed100215q

Ab initiomolecular dynamics for liquid metals
journal, January 1993


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Projector augmented-wave method
journal, December 1994


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces
journal, April 2008


Ab initio molecular dynamics determination of competitive O 2 vs. N 2 adsorption at open metal sites of M 2 (dobdc)
journal, January 2016

  • Parkes, Marie V.; Greathouse, Jeffery A.; Hart, David B.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 16
  • DOI: 10.1039/C6CP00768F

Effect of Metal in M 3 (btc) 2 and M 2 (dobdc) MOFs for O 2 /N 2 Separations: A Combined Density Functional Theory and Experimental Study
journal, March 2015

  • Parkes, Marie V.; Sava Gallis, Dorina F.; Greathouse, Jeffery A.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 12
  • DOI: 10.1021/jp511789g

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

Effect of the damping function in dispersion corrected density functional theory
journal, March 2011

  • Grimme, Stefan; Ehrlich, Stephan; Goerigk, Lars
  • Journal of Computational Chemistry, Vol. 32, Issue 7
  • DOI: 10.1002/jcc.21759

Two Lanthanide Metal–Organic Frameworks as Remarkably Selective and Sensitive Bifunctional Luminescence Sensor for Metal Ions and Small Organic Molecules
journal, January 2017

  • Yan, Wei; Zhang, Chuanlei; Chen, Shuguang
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 2
  • DOI: 10.1021/acsami.6b14563

Interpretation of europium(III) spectra
journal, July 2015


Electronic structure and magnetic properties of lanthanide 3+ cations
journal, June 2013


The magnetic moments and electronic spectra of lanthanide chelates of 2-thenoyltrifluoroacetone
journal, October 1983

  • Hamer, Andrew M.; Livingstone, Stanley E.
  • Transition Metal Chemistry, Vol. 8, Issue 5
  • DOI: 10.1007/BF00620875

Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

Density-functional theory and NiO photoemission spectra
journal, December 1993


Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators
journal, August 1995


First-principles Hubbard U approach for small molecule binding in metal-organic frameworks
journal, May 2016

  • Mann, Gregory W.; Lee, Kyuho; Cococcioni, Matteo
  • The Journal of Chemical Physics, Vol. 144, Issue 17
  • DOI: 10.1063/1.4947240

Small-Molecule Adsorption in Open-Site Metal–Organic Frameworks: A Systematic Density Functional Theory Study for Rational Design
journal, January 2015

  • Lee, Kyuho; Howe, Joshua D.; Lin, Li-Chiang
  • Chemistry of Materials, Vol. 27, Issue 3, p. 668-678
  • DOI: 10.1021/cm502760q

Flexibility in metal-organic framework materials: Impact on sorption properties
journal, August 2005

  • Fletcher, Ashleigh J.; Thomas, K. Mark; Rosseinsky, Matthew J.
  • Journal of Solid State Chemistry, Vol. 178, Issue 8
  • DOI: 10.1016/j.jssc.2005.05.019

Revised Ionic Radii of Lanthanoid(III) Ions in Aqueous Solution
journal, May 2011

  • D’Angelo, Paola; Zitolo, Andrea; Migliorati, Valentina
  • Inorganic Chemistry, Vol. 50, Issue 10
  • DOI: 10.1021/ic200260r

Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities
journal, November 1983


Metal–organic frameworks: functional luminescent and photonic materials for sensing applications
journal, January 2017

  • Lustig, William P.; Mukherjee, Soumya; Rudd, Nathan D.
  • Chemical Society Reviews, Vol. 46, Issue 11
  • DOI: 10.1039/C6CS00930A

DFT Calculation of Russell–Saunders Splitting for Lanthanide Ions Doped in Hexagonal (β)-NaYF 4 Nanocrystals
journal, August 2013

  • Yao, Ge; Berry, Mary T.; May, P. Stanley
  • The Journal of Physical Chemistry C, Vol. 117, Issue 33
  • DOI: 10.1021/jp404206e