skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on August 2, 2020

Title: “Top-Down” Li Deposition Pathway Enabled by an Asymmetric Design for Li Composite Electrode

Abstract

Designing Li composite electrodes with host frameworks for accommodating Li metal has been considered to be an effective approach to suppress Li dendrites. Herein, an asymmetric design of a Mo net/Li metal film (MLF) composite electrode is developed by an inverted thermal infusion method. The asymmetric MLF electrode has a dense oxide passivated layer on the top side, a porous Mo net matrix on the back side, and active Li layer in between. The back side has a larger specific area and higher electric field than the top side, which contacts with the separator upon cycling, triggering the preferred Li deposition and stripping of the porous back side of the electrode far from the separator. The surface passivation layer on the top side of the electrode as an artificial solid electrolyte interphase ensures the stable contact with the electrolyte and separator. Meanwhile, the porous structure of the supporting Mo net provides enough space for accommodating the volume change during Li deposition and stripping. This asymmetry design enables a unique “top down” growth pathway for Li deposition in the MLF electrode, suppressing the dendrite growth effectively. In conclusion, the design strategy provides a new direction for high-energy dendrite-free Li metal anodes.

Authors:
 [1];  [1];  [1];  [1];  [2];  [1];  [1];  [1];  [2];  [1]
  1. Fudan Univ., Shanghai (China). Dept. of Materials Science
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Natural Science Foundation of China (NNSFC); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1574378
Alternate Identifier(s):
OSTI ID: 1546108
Grant/Contract Number:  
AC02-06CH11357; AC02‐06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 9; Journal Issue: 35
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; anodes; asymmetry design; film; lithium metal batteries; molybdenum net

Citation Formats

Yue, Xin-Yang, Li, Xun-Lu, Bao, Jian, Qiu, Qi-Qi, Liu, Tongchao, Chen, Dong, Yuan, Shan-Shan, Wu, Xiao-Jing, Lu, Jun, and Zhou, Yong-Ning. “Top-Down” Li Deposition Pathway Enabled by an Asymmetric Design for Li Composite Electrode. United States: N. p., 2019. Web. doi:10.1002/aenm.201901491.
Yue, Xin-Yang, Li, Xun-Lu, Bao, Jian, Qiu, Qi-Qi, Liu, Tongchao, Chen, Dong, Yuan, Shan-Shan, Wu, Xiao-Jing, Lu, Jun, & Zhou, Yong-Ning. “Top-Down” Li Deposition Pathway Enabled by an Asymmetric Design for Li Composite Electrode. United States. doi:10.1002/aenm.201901491.
Yue, Xin-Yang, Li, Xun-Lu, Bao, Jian, Qiu, Qi-Qi, Liu, Tongchao, Chen, Dong, Yuan, Shan-Shan, Wu, Xiao-Jing, Lu, Jun, and Zhou, Yong-Ning. Fri . "“Top-Down” Li Deposition Pathway Enabled by an Asymmetric Design for Li Composite Electrode". United States. doi:10.1002/aenm.201901491.
@article{osti_1574378,
title = {“Top-Down” Li Deposition Pathway Enabled by an Asymmetric Design for Li Composite Electrode},
author = {Yue, Xin-Yang and Li, Xun-Lu and Bao, Jian and Qiu, Qi-Qi and Liu, Tongchao and Chen, Dong and Yuan, Shan-Shan and Wu, Xiao-Jing and Lu, Jun and Zhou, Yong-Ning},
abstractNote = {Designing Li composite electrodes with host frameworks for accommodating Li metal has been considered to be an effective approach to suppress Li dendrites. Herein, an asymmetric design of a Mo net/Li metal film (MLF) composite electrode is developed by an inverted thermal infusion method. The asymmetric MLF electrode has a dense oxide passivated layer on the top side, a porous Mo net matrix on the back side, and active Li layer in between. The back side has a larger specific area and higher electric field than the top side, which contacts with the separator upon cycling, triggering the preferred Li deposition and stripping of the porous back side of the electrode far from the separator. The surface passivation layer on the top side of the electrode as an artificial solid electrolyte interphase ensures the stable contact with the electrolyte and separator. Meanwhile, the porous structure of the supporting Mo net provides enough space for accommodating the volume change during Li deposition and stripping. This asymmetry design enables a unique “top down” growth pathway for Li deposition in the MLF electrode, suppressing the dendrite growth effectively. In conclusion, the design strategy provides a new direction for high-energy dendrite-free Li metal anodes.},
doi = {10.1002/aenm.201901491},
journal = {Advanced Energy Materials},
number = 35,
volume = 9,
place = {United States},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on August 2, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes
journal, January 2017

  • Tu, Zhengyuan; Zachman, Michael J.; Choudhury, Snehashis
  • Advanced Energy Materials, Vol. 7, Issue 8
  • DOI: 10.1002/aenm.201602367

The path towards sustainable energy
journal, December 2016

  • Chu, Steven; Cui, Yi; Liu, Nian
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4834

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Opportunities and challenges for a sustainable energy future
journal, August 2012

  • Chu, Steven; Majumdar, Arun
  • Nature, Vol. 488, Issue 7411, p. 294-303
  • DOI: 10.1038/nature11475

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


Problem, Status, and Possible Solutions for Lithium Metal Anode of Rechargeable Batteries
journal, February 2018


A Review of Solid Electrolyte Interphases on Lithium Metal Anode
journal, November 2015


Engineering of lithium-metal anodes towards a safe and stable battery
journal, September 2018


Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries
journal, January 2014

  • Aryanfar, Asghar; Brooks, Daniel J.; Colussi, Agustín J.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 45
  • DOI: 10.1039/C4CP03590A

Rational design of graphitic-inorganic Bi-layer artificial SEI for stable lithium metal anode
journal, January 2019


Stabilization of Lithium Metal Anodes by Hybrid Artificial Solid Electrolyte Interphase
journal, July 2017


An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes
journal, December 2016

  • Liu, Yayuan; Lin, Dingchang; Yuen, Pak Yan
  • Advanced Materials, Vol. 29, Issue 10
  • DOI: 10.1002/adma.201605531

An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
journal, December 2015


3D Porous Cu Current Collector/Li-Metal Composite Anode for Stable Lithium-Metal Batteries
journal, March 2017

  • Li, Qi; Zhu, Shoupu; Lu, Yingying
  • Advanced Functional Materials, Vol. 27, Issue 18
  • DOI: 10.1002/adfm.201606422

Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite-Free Lithium Metal Anode
journal, May 2017

  • Chi, Shang-Sen; Liu, Yongchang; Song, Wei-Li
  • Advanced Functional Materials, Vol. 27, Issue 24
  • DOI: 10.1002/adfm.201700348

Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes
journal, May 2016


Covalently Connected Carbon Nanostructures for Current Collectors in Both the Cathode and Anode of Li-S Batteries
journal, September 2016


Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions
journal, April 2019


Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
journal, August 2015

  • Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9058

Microscale Lithium Metal Stored inside Cellular Graphene Scaffold toward Advanced Metallic Lithium Anodes
journal, January 2018


Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries
journal, April 2018


Lithiophilic Cu–Ni core–shell nanowire network as a stable host for improving lithium anode performance
journal, October 2017


3D Wettable Framework for Dendrite-Free Alkali Metal Anodes
journal, May 2018

  • Zhang, Ying; Wang, Chengwei; Pastel, Glenn
  • Advanced Energy Materials, Vol. 8, Issue 18
  • DOI: 10.1002/aenm.201800635

Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes
journal, June 2017

  • Zuo, Tong-Tong; Wu, Xiong-Wei; Yang, Chun-Peng
  • Advanced Materials, Vol. 29, Issue 29
  • DOI: 10.1002/adma.201700389

Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
journal, February 2016

  • Liang, Zheng; Lin, Dingchang; Zhao, Jie
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 11
  • DOI: 10.1073/pnas.1518188113

Making Li-metal electrodes rechargeable by controlling the dendrite growth direction
journal, June 2017


Defect-induced plating of lithium metal within porous graphene networks
journal, April 2014

  • Mukherjee, Rahul; Thomas, Abhay V.; Datta, Dibakar
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4710

Insulative Microfiber 3D Matrix as a Host Material Minimizing Volume Change of the Anode of Li Metal Batteries
journal, March 2017


Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure
journal, November 2014

  • Zhang, Yaohui; Qian, Jiangfeng; Xu, Wu
  • Nano Letters, Vol. 14, Issue 12
  • DOI: 10.1021/nl5039117

A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte
journal, August 1998


Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition
journal, February 2012


Infrared Spectra and the Structures and Thermodynamics of Gaseous LiO, Li 2 O, and Li 2 O 2
journal, November 1963

  • White, David; Seshadri, K. S.; Dever, D. F.
  • The Journal of Chemical Physics, Vol. 39, Issue 10
  • DOI: 10.1063/1.1734049

Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes
journal, March 2018

  • Zhang, Xue-Qiang; Chen, Xiang; Cheng, Xin-Bing
  • Angewandte Chemie International Edition, Vol. 57, Issue 19
  • DOI: 10.1002/anie.201801513

Stable Li Metal Anodes via Regulating Lithium Plating/Stripping in Vertically Aligned Microchannels
journal, September 2017

  • Wang, Shu-Hua; Yin, Ya-Xia; Zuo, Tong-Tong
  • Advanced Materials, Vol. 29, Issue 40
  • DOI: 10.1002/adma.201703729

Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries
journal, February 2016

  • Cheng, Xin-Bing; Hou, Ting-Zheng; Zhang, Rui
  • Advanced Materials, Vol. 28, Issue 15
  • DOI: 10.1002/adma.201506124

Live Scanning Electron Microscope Observations of Dendritic Growth in Lithium/Polymer Cells
journal, January 2002

  • Dollé, Mickaël; Sannier, Lucas; Beaudoin, Bernard
  • Electrochemical and Solid-State Letters, Vol. 5, Issue 12
  • DOI: 10.1149/1.1519970

Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode
journal, January 2015

  • Bieker, Georg; Winter, Martin; Bieker, Peter
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 14
  • DOI: 10.1039/C4CP05865H

EIS study on the formation of solid electrolyte interface in Li-ion battery
journal, January 2006


Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes
journal, January 2018


N-Doped Graphene Modified 3D Porous Cu Current Collector toward Microscale Homogeneous Li Deposition for Li Metal Anodes
journal, May 2018

  • Zhang, Rui; Wen, Shuaiwei; Wang, Ning
  • Advanced Energy Materials, Vol. 8, Issue 23
  • DOI: 10.1002/aenm.201800914

The surface morphology of Li metal electrode
journal, July 2000

  • Kim, S. W.; Ahn, Y. J.; Yoon, W. Y.
  • Metals and Materials, Vol. 6, Issue 4
  • DOI: 10.1007/BF03028081

Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes
journal, July 2017


Li 2 O-Reinforced Cu Nanoclusters as Porous Structure for Dendrite-Free and Long-Lifespan Lithium Metal Anode
journal, September 2016

  • Zhang, Zhenggang; Xu, Xiaoyue; Wang, Shuwei
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 40
  • DOI: 10.1021/acsami.6b08775

Dry-air-stable lithium silicide–lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents
journal, October 2014

  • Zhao, Jie; Lu, Zhenda; Liu, Nian
  • Nature Communications, Vol. 5, Article No. 5088
  • DOI: 10.1038/ncomms6088