skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on September 20, 2020

Title: Magnetic Weyl semimetal phase in a Kagomé crystal

Abstract

Weyl semimetals are crystalline solids that host emergent relativistic Weyl fermions and have characteristic surface Fermi-arcs in their electronic structure. Weyl semimetals with broken time reversal symmetry are difficult to identify unambiguously. In this work, using angle-resolved photoemission spectroscopy, we visualized the electronic structure of the ferromagnetic crystal Co 3Sn 2S 2 and discovered its characteristic surface Fermi-arcs and linear bulk band dispersions across the Weyl points. Here, these results establish Co 3Sn 2S 2 as a magnetic Weyl semimetal that may serve as a platform for realizing phenomena such as chiral magnetic effects, unusually large anomalous Hall effect and quantum anomalous Hall effect.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [6];  [5]; ORCiD logo [7]; ORCiD logo [8]; ORCiD logo [9]; ORCiD logo [9]; ORCiD logo [9]; ORCiD logo [10]; ORCiD logo [4]; ORCiD logo [11];  [10]; ORCiD logo [12]; ORCiD logo [13]; ORCiD logo [14]
  1. Max Planck Institute of Microstructure Physics, Halle (Germany); ShanghaiTech Univ., Shanghai (China)
  2. ShanghaiTech Univ., Shanghai (China); ShanghaiTech Lab. for Topological Physics, Shanghai (China); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Chinese Academy of Sciences (CAS), Beijing (China)
  4. Max Planck Institute for Chemical Physics of Solids, Dresden (Germany)
  5. Univ. of Oxford, Oxford (United Kingdom)
  6. ShanghaiTech Univ., Shanghai (China); ShanghaiTech Lab. for Topological Physics, Shanghai (China); Univ. of Oxford, Oxford (United Kingdom)
  7. ShanghaiTech Univ., Shanghai (China)
  8. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  9. Diamond Light Source, Didcot (United Kingdom)
  10. ShanghaiTech Univ., Shanghai (China); ShanghaiTech Lab. for Topological Physics, Shanghai (China)
  11. Tsinghua Univ., Beijing (China)
  12. Max Planck Institute of Microstructure Physics, Halle (Germany)
  13. Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Harvard Univ., Cambridge, MA (United States)
  14. ShanghaiTech Univ., Shanghai (China); ShanghaiTech Lab. for Topological Physics, Shanghai (China); Univ. of Oxford, Oxford (United Kingdom); Tsinghua Univ., Beijing (China)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Scientific User Facilities Division
OSTI Identifier:
1574336
Grant/Contract Number:  
AC02-05CH11231; AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Science
Additional Journal Information:
Journal Volume: 365; Journal Issue: 6459; Journal ID: ISSN 0036-8075
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Liu, D. F., Liang, A. J., Liu, E. K., Xu, Q. N., Li, Y. W., Chen, C., Pei, D., Shi, W. J., Mo, S. K., Dudin, P., Kim, T., Cacho, C., Li, G., Sun, Y., Yang, L. X., Liu, Z. K., Parkin, S. S. P., Felser, C., and Chen, Y. L. Magnetic Weyl semimetal phase in a Kagomé crystal. United States: N. p., 2019. Web. doi:10.1126/science.aav2873.
Liu, D. F., Liang, A. J., Liu, E. K., Xu, Q. N., Li, Y. W., Chen, C., Pei, D., Shi, W. J., Mo, S. K., Dudin, P., Kim, T., Cacho, C., Li, G., Sun, Y., Yang, L. X., Liu, Z. K., Parkin, S. S. P., Felser, C., & Chen, Y. L. Magnetic Weyl semimetal phase in a Kagomé crystal. United States. doi:10.1126/science.aav2873.
Liu, D. F., Liang, A. J., Liu, E. K., Xu, Q. N., Li, Y. W., Chen, C., Pei, D., Shi, W. J., Mo, S. K., Dudin, P., Kim, T., Cacho, C., Li, G., Sun, Y., Yang, L. X., Liu, Z. K., Parkin, S. S. P., Felser, C., and Chen, Y. L. Fri . "Magnetic Weyl semimetal phase in a Kagomé crystal". United States. doi:10.1126/science.aav2873.
@article{osti_1574336,
title = {Magnetic Weyl semimetal phase in a Kagomé crystal},
author = {Liu, D. F. and Liang, A. J. and Liu, E. K. and Xu, Q. N. and Li, Y. W. and Chen, C. and Pei, D. and Shi, W. J. and Mo, S. K. and Dudin, P. and Kim, T. and Cacho, C. and Li, G. and Sun, Y. and Yang, L. X. and Liu, Z. K. and Parkin, S. S. P. and Felser, C. and Chen, Y. L.},
abstractNote = {Weyl semimetals are crystalline solids that host emergent relativistic Weyl fermions and have characteristic surface Fermi-arcs in their electronic structure. Weyl semimetals with broken time reversal symmetry are difficult to identify unambiguously. In this work, using angle-resolved photoemission spectroscopy, we visualized the electronic structure of the ferromagnetic crystal Co3Sn2S2 and discovered its characteristic surface Fermi-arcs and linear bulk band dispersions across the Weyl points. Here, these results establish Co3Sn2S2 as a magnetic Weyl semimetal that may serve as a platform for realizing phenomena such as chiral magnetic effects, unusually large anomalous Hall effect and quantum anomalous Hall effect.},
doi = {10.1126/science.aav2873},
journal = {Science},
number = 6459,
volume = 365,
place = {United States},
year = {2019},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on September 20, 2020
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Evidence for magnetic Weyl fermions in a correlated metal
journal, September 2017

  • Kuroda, K.; Tomita, T.; Suzuki, M. -T.
  • Nature Materials, Vol. 16, Issue 11
  • DOI: 10.1038/nmat4987

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Quick iterative scheme for the calculation of transfer matrices: application to Mo (100)
journal, May 1984

  • Sancho, M. P. Lopez; Sancho, J. M. Lopez; Rubio, J.
  • Journal of Physics F: Metal Physics, Vol. 14, Issue 5
  • DOI: 10.1088/0305-4608/14/5/016

Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions
journal, September 2018


Topological insulators and superconductors
journal, October 2011


Weyl and Dirac semimetals in three-dimensional solids
journal, January 2018


Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2
journal, July 2016

  • Huang, Lunan; McCormick, Timothy M.; Ochi, Masayuki
  • Nature Materials, Vol. 15, Issue 11
  • DOI: 10.1038/nmat4685

Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal
journal, July 2018


Topological surface Fermi arcs in the magnetic Weyl semimetal Co 3 Sn 2 S 2
journal, June 2018


Elastic Gauge Fields in Weyl Semimetals
journal, October 2015


Type-II Weyl semimetals
journal, November 2015

  • Soluyanov, Alexey A.; Gresch, Dominik; Wang, Zhijun
  • Nature, Vol. 527, Issue 7579
  • DOI: 10.1038/nature15768

wannier90: A tool for obtaining maximally-localised Wannier functions
journal, May 2008

  • Mostofi, Arash A.; Yates, Jonathan R.; Lee, Young-Su
  • Computer Physics Communications, Vol. 178, Issue 9
  • DOI: 10.1016/j.cpc.2007.11.016

Time-Reversal-Breaking Weyl Fermions in Magnetic Heusler Alloys
journal, November 2016


Colloquium: Topological insulators
journal, November 2010


Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order
journal, December 2009

  • Machida, Yo; Nakatsuji, Satoru; Onoda, Shigeki
  • Nature, Vol. 463, Issue 7278
  • DOI: 10.1038/nature08680

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Viscoelastic response of topological tight-binding models in two and three dimensions
journal, October 2015


Magnetic and noncentrosymmetric Weyl fermion semimetals in the R AlGe family of compounds ( R = rare earth )
journal, January 2018


Weyl Semimetal in a Topological Insulator Multilayer
journal, September 2011


Chern Semimetal and the Quantized Anomalous Hall Effect in HgCr 2 Se 4
journal, October 2011


Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides
journal, March 2015


Discovery of a Weyl fermion semimetal and topological Fermi arcs
journal, July 2015


Friedel oscillations due to Fermi arcs in Weyl semimetals
journal, November 2012


Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals
journal, October 2014

  • Potter, Andrew C.; Kimchi, Itamar; Vishwanath, Ashvin
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6161

Experimental Discovery of Weyl Semimetal TaAs
journal, July 2015


Topological response in Weyl semimetals and the chiral anomaly
journal, September 2012


Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family
journal, November 2015

  • Liu, Z. K.; Yang, L. X.; Sun, Y.
  • Nature Materials, Vol. 15, Issue 1
  • DOI: 10.1038/nmat4457

Quadratic Fermi node in a 3D strongly correlated semimetal
journal, December 2015

  • Kondo, Takeshi; Nakayama, M.; Chen, R.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10042

Weyl points in the ferromagnetic Heusler compound Co 2 MnAl
journal, May 2016


Chiral gauge field and axial anomaly in a Weyl semimetal
journal, June 2013


Visualizing electronic structures of quantum materials by angle-resolved photoemission spectroscopy
journal, August 2018


Inhomogeneous Weyl and Dirac Semimetals: Transport in Axial Magnetic Fields and Fermi Arc Surface States from Pseudo-Landau Levels
journal, December 2016

  • Grushin, Adolfo G.; Venderbos, Jörn W. F.; Vishwanath, Ashvin
  • Physical Review X, Vol. 6, Issue 4
  • DOI: 10.1103/PhysRevX.6.041046

Weyl semimetal phase in the non-centrosymmetric compound TaAs
journal, August 2015

  • Yang, L. X.; Liu, Z. K.; Sun, Y.
  • Nature Physics, Vol. 11, Issue 9
  • DOI: 10.1038/nphys3425

Fermi Arcs and Their Topological Character in the Candidate Type-II Weyl Semimetal MoTe 2
journal, August 2016


Signature of type-II Weyl semimetal phase in MoTe2
journal, January 2017

  • Jiang, J.; Liu, Z. K.; Sun, Y.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13973

Chiral Anomaly from Strain-Induced Gauge Fields in Dirac and Weyl Semimetals
journal, October 2016


Nobel Lecture: Graphene: Materials in the Flatland
journal, August 2011


Anomalous transport of Weyl fermions in Weyl semimetals
journal, February 2014


Recent developments in transport phenomena in Weyl semimetals
journal, November 2013


Mobile metallic domain walls in an all-in-all-out magnetic insulator
journal, October 2015


Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates
journal, May 2011


A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class
journal, June 2015

  • Huang, Shin-Ming; Xu, Su-Yang; Belopolski, Ilya
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8373