skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on November 8, 2020

Title: Magnetic-Field Control of Topological Electronic Response near Room Temperature in Correlated Kagome Magnets

Abstract

Strongly correlated kagome magnets are promising candidates for achieving controllable topological devices owing to the rich interplay between inherent Dirac fermions and correlation-driven magnetism. Here we report tunable local magnetism and its intriguing control of topological electronic response near room temperature in the kagome magnet Fe 3Sn 2 using small angle neutron scattering, muon spin rotation, and magnetoresistivity measurement techniques. The average bulk spin direction and magnetic domain texture can be tuned effectively by small magnetic fields. Magnetoresistivity, in response, exhibits a measurable degree of anisotropic weak localization behavior, which allows the direct control of Dirac fermions with strong electron correlations. Furthermore, our work points to a novel platform for manipulating emergent phenomena in strongly correlated topological materials relevant to future applications.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [4];  [3];  [5]; ORCiD logo [6]; ORCiD logo [7]; ORCiD logo [8]; ORCiD logo [8]; ORCiD logo [1];  [6]; ORCiD logo [1];  [9];  [2]; ORCiD logo [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States). Condensed Matter Physics and Materials Science Div.
  2. Renmin Univ. of China, Beijing (China). Dept. of Physics and Beijing Key Lab. of Opto-electronic Functional Materials & Micro-nano Devices
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Scattering Div.
  4. Princeton Univ., Princeton, NJ (United States). Lab. for Topological Quantum Matter and Advanced Spectroscopy, Dept. of Physics; Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. for Muon Spin Spectroscopy
  5. Princeton Univ., Princeton, NJ (United States). Lab. for Topological Quantum Matter and Advanced Spectroscopy, Dept. of Physics
  6. Brookhaven National Lab. (BNL), Upton, NY (United States). Condensed Matter Physics and Materials Science Div.; Stony Brook Univ., Stony Brook, NY (United States). Materials Science and Chemical Engineering Dept.
  7. Brookhaven National Lab. (BNL), Upton, NY (United States). Condensed Matter Physics and Materials Science Div.; Chinese Academy of Sciences, Shenyang (China). Shenyang National Lab. for Materials Science, Institute of Metal Research
  8. Chinese Academy of Sciences, Shenyang (China). Shenyang National Lab. for Materials Science, Institute of Metal Research
  9. Princeton Univ., Princeton, NJ (United States). Lab. for Topological Quantum Matter and Advanced Spectroscopy, Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Div.
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1574122
Report Number(s):
BNL-212320-2019-JAAM
Journal ID: ISSN 0031-9007; PRLTAO
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 123; Journal Issue: 19; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Li, Yangmu, Wang, Qi, DeBeer-Schmitt, Lisa, Guguchia, Zurab, Desautels, Ryan D., Yin, Jia -Xin, Du, Qianheng, Ren, Weijun, Zhao, Xinguo, Zhang, Zhidong, Zaliznyak, Igor A., Petrovic, Cedomir, Yin, Weiguo, Hasan, M. Zahid, Lei, Hechang, and Tranquada, John M. Magnetic-Field Control of Topological Electronic Response near Room Temperature in Correlated Kagome Magnets. United States: N. p., 2019. Web. doi:10.1103/PhysRevLett.123.196604.
Li, Yangmu, Wang, Qi, DeBeer-Schmitt, Lisa, Guguchia, Zurab, Desautels, Ryan D., Yin, Jia -Xin, Du, Qianheng, Ren, Weijun, Zhao, Xinguo, Zhang, Zhidong, Zaliznyak, Igor A., Petrovic, Cedomir, Yin, Weiguo, Hasan, M. Zahid, Lei, Hechang, & Tranquada, John M. Magnetic-Field Control of Topological Electronic Response near Room Temperature in Correlated Kagome Magnets. United States. doi:10.1103/PhysRevLett.123.196604.
Li, Yangmu, Wang, Qi, DeBeer-Schmitt, Lisa, Guguchia, Zurab, Desautels, Ryan D., Yin, Jia -Xin, Du, Qianheng, Ren, Weijun, Zhao, Xinguo, Zhang, Zhidong, Zaliznyak, Igor A., Petrovic, Cedomir, Yin, Weiguo, Hasan, M. Zahid, Lei, Hechang, and Tranquada, John M. Fri . "Magnetic-Field Control of Topological Electronic Response near Room Temperature in Correlated Kagome Magnets". United States. doi:10.1103/PhysRevLett.123.196604.
@article{osti_1574122,
title = {Magnetic-Field Control of Topological Electronic Response near Room Temperature in Correlated Kagome Magnets},
author = {Li, Yangmu and Wang, Qi and DeBeer-Schmitt, Lisa and Guguchia, Zurab and Desautels, Ryan D. and Yin, Jia -Xin and Du, Qianheng and Ren, Weijun and Zhao, Xinguo and Zhang, Zhidong and Zaliznyak, Igor A. and Petrovic, Cedomir and Yin, Weiguo and Hasan, M. Zahid and Lei, Hechang and Tranquada, John M.},
abstractNote = {Strongly correlated kagome magnets are promising candidates for achieving controllable topological devices owing to the rich interplay between inherent Dirac fermions and correlation-driven magnetism. Here we report tunable local magnetism and its intriguing control of topological electronic response near room temperature in the kagome magnet Fe3Sn2 using small angle neutron scattering, muon spin rotation, and magnetoresistivity measurement techniques. The average bulk spin direction and magnetic domain texture can be tuned effectively by small magnetic fields. Magnetoresistivity, in response, exhibits a measurable degree of anisotropic weak localization behavior, which allows the direct control of Dirac fermions with strong electron correlations. Furthermore, our work points to a novel platform for manipulating emergent phenomena in strongly correlated topological materials relevant to future applications.},
doi = {10.1103/PhysRevLett.123.196604},
journal = {Physical Review Letters},
number = 19,
volume = 123,
place = {United States},
year = {2019},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on November 8, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Weyl and Dirac semimetals in three-dimensional solids
journal, January 2018


Topological order, emergent gauge fields, and Fermi surface reconstruction
journal, November 2018


Topological states of condensed matter
journal, October 2017

  • Wang, Jing; Zhang, Shou-Cheng
  • Nature Materials, Vol. 16, Issue 11
  • DOI: 10.1038/nmat5012

Topological insulators, topological superconductors and Weyl fermion semimetals: discoveries, perspectives and outlooks
journal, September 2015


Theoretical prediction of a strongly correlated Dirac metal
journal, July 2014

  • Mazin, I. I.; Jeschke, Harald O.; Lechermann, Frank
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5261

Massive Dirac fermions in a ferromagnetic kagome metal
journal, March 2018


Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet
journal, September 2018


Evidence for magnetic Weyl fermions in a correlated metal
journal, September 2017

  • Kuroda, K.; Tomita, T.; Suzuki, M. -T.
  • Nature Materials, Vol. 16, Issue 11
  • DOI: 10.1038/nmat4987

Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature
journal, October 2015

  • Nakatsuji, Satoru; Kiyohara, Naoki; Higo, Tomoya
  • Nature, Vol. 527, Issue 7577
  • DOI: 10.1038/nature15723

Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet
journal, February 2019


Two-dimensional gas of massless Dirac fermions in graphene
journal, November 2005

  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.
  • Nature, Vol. 438, Issue 7065, p. 197-200
  • DOI: 10.1038/nature04233

Anomalous Hall effect in a ferromagnetic Fe 3 Sn 2 single crystal with a geometrically frustrated Fe bilayer kagome lattice
journal, August 2016


The giant anomalous Hall effect in the ferromagnet Fe 3 Sn 2 —a frustrated kagome metal
journal, March 2011


Anomalous Hall effect
journal, May 2010


Mossbauer effect study of Fe 3 Sn 2
journal, February 1978


Non-collinearity and spin frustration in the itinerant kagome ferromagnet Fe 3 Sn 2
journal, October 2009


Flatbands and Emergent Ferromagnetic Ordering in Fe 3 Sn 2 Kagome Lattices
journal, August 2018


Anisotropic magnetoresistance in ferromagnetic 3d alloys
journal, July 1975


The 40 m general purpose small-angle neutron scattering instrument at Oak Ridge National Laboratory
journal, August 2012

  • Wignall, George D.; Littrell, Kenneth C.; Heller, William T.
  • Journal of Applied Crystallography, Vol. 45, Issue 5
  • DOI: 10.1107/S0021889812027057

The new versatile general purpose surface-muon instrument (GPS) based on silicon photomultipliers for μSR measurements on a continuous-wave beam
journal, September 2017

  • Amato, A.; Luetkens, H.; Sedlak, K.
  • Review of Scientific Instruments, Vol. 88, Issue 9
  • DOI: 10.1063/1.4986045

Stripeless incommensurate magnetism in strongly correlated oxide La 1.5 Sr 0.5 CoO 4
journal, May 2007


Spin-Orbit Interaction and Magnetoresistance in the Two Dimensional Random System
journal, February 1980

  • Hikami, S.; Larkin, A. I.; Nagaoka, Y.
  • Progress of Theoretical Physics, Vol. 63, Issue 2
  • DOI: 10.1143/PTP.63.707

Weak localization of bulk channels in topological insulator thin films
journal, September 2011


Quantum Spin Hall Effect in Graphene
journal, November 2005


Colloquium: Topological insulators
journal, November 2010


Topological nodal semimetals
journal, December 2011


Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals
journal, April 2017


Hard magnetic properties in nanoflake van der Waals Fe3GeTe2
journal, April 2018