DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Underestimation of column NO2 amounts from the OMI satellite compared to diurnally varying ground-based retrievals from multiple PANDORA spectrometer instruments

Abstract

Retrievals of total column NO2 (TCNO2) are compared for 14 sites from the Ozone Measuring Instrument (OMI using OMNO2-NASA v3.1) on the AURA satellite and from multiple ground-based PANDORA spectrometer instruments making direct-sun measurements. While OMI accurately provides the daily global distribution of retrieved TCNO2, OMI almost always underestimates the local amount of TCNO2 by 50 % to 100 % in polluted areas, while occasionally the daily OMI value exceeds that measured by PANDORA at very clean sites. Compared to local ground-based or aircraft measurements, OMI cannot resolve spatially variable TCNO2 pollution within a city or urban areas, which makes it less suitable for air quality assessments related to human health. In addition to systematic underestimates in polluted areas, OMI's selected 13:30 Equator crossing timepolar orbit causes it to miss the frequently much higher values of TCNO2 that occur before or after the OMI overpass time. Six discussed Northern Hemisphere PANDORA sites have multi-year data records (Busan,Seoul, Washington DC, Waterflow, New Mexico, Boulder, Colorado, and Mauna Loa),and one site in the Southern Hemisphere (Buenos Aires, Argentina). The first four of these sites and Buenos Aires frequently have high TCNO2(TCNO2 > 0.5 DU). Eight additional sites have shorter-term data records inmore » the US and South Korea. One of these is a 1-year data record from a highly polluted site at City College in New York City with pollution levels comparable to Seoul, South Korea. OMI-estimated air mass factor, surface reflectivity, and the OMI 24 km × 13 km FOV (field of view)are three factors that can cause OMI to underestimate TCNO2. Because of the local inhomogeneity of NOx emissions, the large OMI FOV is the most likely factor for consistent underestimates when comparing OMI TCNO2 to retrievals from the small PANDORA effective FOV (measured in m2) calculated from the solar diameter of 0.5°.« less

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2];  [3]; ORCiD logo [4];  [5];  [6]
  1. Univ. of Maryland Baltimore County (UMBC), Baltimore, MD (United States)
  2. Yonsei National Univ., Seoul (South Korea). Dept. of Atmospheric Sciences
  3. Pusan National Univ., Busan (South Korea). Dept. of Atmospheric Science
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Earth Systems Observations
  5. Dept. de Investigaciones en Láseres y Aplicaciones (DEILAP), Instituto de Investigaciones Científicas y Técnicaspara la Defensa (CITEDEF), Ministerio de Defensa (MINDEF), Buenos Aires (Argentina)
  6. City College of New York, New York City, NY (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1573996
Report Number(s):
LA-UR-19-23208
Journal ID: ISSN 1867-8548
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Measurement Techniques (Online)
Additional Journal Information:
Journal Name: Atmospheric Measurement Techniques (Online); Journal Volume: 12; Journal Issue: 10; Journal ID: ISSN 1867-8548
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; Earth Sciences; Energy Sciences; Remote Sensing; Nitrogen Dioxide; Satellite; Air Quality; Ozone; OMI; Pandora

Citation Formats

Herman, Jay, Abuhassan, Nader, Kim, Jhoon, Kim, Jae, Dubey, Manvendra Krishna, Raponi, Marcelo, and Tzortziou, Maria. Underestimation of column NO2 amounts from the OMI satellite compared to diurnally varying ground-based retrievals from multiple PANDORA spectrometer instruments. United States: N. p., 2019. Web. doi:10.5194/amt-12-5593-2019.
Herman, Jay, Abuhassan, Nader, Kim, Jhoon, Kim, Jae, Dubey, Manvendra Krishna, Raponi, Marcelo, & Tzortziou, Maria. Underestimation of column NO2 amounts from the OMI satellite compared to diurnally varying ground-based retrievals from multiple PANDORA spectrometer instruments. United States. https://doi.org/10.5194/amt-12-5593-2019
Herman, Jay, Abuhassan, Nader, Kim, Jhoon, Kim, Jae, Dubey, Manvendra Krishna, Raponi, Marcelo, and Tzortziou, Maria. Wed . "Underestimation of column NO2 amounts from the OMI satellite compared to diurnally varying ground-based retrievals from multiple PANDORA spectrometer instruments". United States. https://doi.org/10.5194/amt-12-5593-2019. https://www.osti.gov/servlets/purl/1573996.
@article{osti_1573996,
title = {Underestimation of column NO2 amounts from the OMI satellite compared to diurnally varying ground-based retrievals from multiple PANDORA spectrometer instruments},
author = {Herman, Jay and Abuhassan, Nader and Kim, Jhoon and Kim, Jae and Dubey, Manvendra Krishna and Raponi, Marcelo and Tzortziou, Maria},
abstractNote = {Retrievals of total column NO2 (TCNO2) are compared for 14 sites from the Ozone Measuring Instrument (OMI using OMNO2-NASA v3.1) on the AURA satellite and from multiple ground-based PANDORA spectrometer instruments making direct-sun measurements. While OMI accurately provides the daily global distribution of retrieved TCNO2, OMI almost always underestimates the local amount of TCNO2 by 50 % to 100 % in polluted areas, while occasionally the daily OMI value exceeds that measured by PANDORA at very clean sites. Compared to local ground-based or aircraft measurements, OMI cannot resolve spatially variable TCNO2 pollution within a city or urban areas, which makes it less suitable for air quality assessments related to human health. In addition to systematic underestimates in polluted areas, OMI's selected 13:30 Equator crossing timepolar orbit causes it to miss the frequently much higher values of TCNO2 that occur before or after the OMI overpass time. Six discussed Northern Hemisphere PANDORA sites have multi-year data records (Busan,Seoul, Washington DC, Waterflow, New Mexico, Boulder, Colorado, and Mauna Loa),and one site in the Southern Hemisphere (Buenos Aires, Argentina). The first four of these sites and Buenos Aires frequently have high TCNO2(TCNO2 > 0.5 DU). Eight additional sites have shorter-term data records in the US and South Korea. One of these is a 1-year data record from a highly polluted site at City College in New York City with pollution levels comparable to Seoul, South Korea. OMI-estimated air mass factor, surface reflectivity, and the OMI 24 km × 13 km FOV (field of view)are three factors that can cause OMI to underestimate TCNO2. Because of the local inhomogeneity of NOx emissions, the large OMI FOV is the most likely factor for consistent underestimates when comparing OMI TCNO2 to retrievals from the small PANDORA effective FOV (measured in m2) calculated from the solar diameter of 0.5°.},
doi = {10.5194/amt-12-5593-2019},
journal = {Atmospheric Measurement Techniques (Online)},
number = 10,
volume = 12,
place = {United States},
year = {Wed Oct 23 00:00:00 EDT 2019},
month = {Wed Oct 23 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 25 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Ozone comparison between Pandora #34, Dobson #061, OMI, and OMPS in Boulder, Colorado, for the period December 2013–December 2016
journal, January 2017

  • Herman, Jay; Evans, Robert; Cede, Alexander
  • Atmospheric Measurement Techniques, Vol. 10, Issue 9
  • DOI: 10.5194/amt-10-3539-2017

OMI Satellite and Ground-Based Pandora Observations and Their Application to Surface NO 2 Estimations at Terrestrial and Marine Sites : Estimating Surface NO
journal, January 2018

  • Kollonige, Debra E.; Thompson, Anne M.; Josipovic, Miroslav
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 2
  • DOI: 10.1002/2017JD026518

Impact of the ozone monitoring instrument row anomaly on the long-term record of aerosol products
journal, January 2018

  • Torres, Omar; Bhartia, Pawan K.; Jethva, Hiren
  • Atmospheric Measurement Techniques, Vol. 11, Issue 5
  • DOI: 10.5194/amt-11-2701-2018

Reactive Nitrogen Species Emission Trends in Three Light-/Medium-Duty United States Fleets
journal, July 2015

  • Bishop, Gary A.; Stedman, Donald H.
  • Environmental Science & Technology, Vol. 49, Issue 18
  • DOI: 10.1021/acs.est.5b02392

Remote sensing of exposure to NO2: Satellite versus ground-based measurement in a large urban area
journal, April 2013


Earth surface reflectance climatology from 3 years of OMI data
journal, January 2008

  • Kleipool, Q. L.; Dobber, M. R.; de Haan, J. F.
  • Journal of Geophysical Research, Vol. 113, Issue D18
  • DOI: 10.1029/2008JD010290

The importance of surface reflectance anisotropy for cloud and NO 2 retrievals from GOME-2 and OMI
journal, January 2018

  • Lorente, Alba; Boersma, K. Folkert; Stammes, Piet
  • Atmospheric Measurement Techniques, Vol. 11, Issue 7
  • DOI: 10.5194/amt-11-4509-2018

Effects of meteorology and emissions on urban air quality: a quantitative statistical approach to long-term records (1999–2016) in Seoul, South Korea
journal, January 2018

  • Seo, Jihoon; Park, Doo-Sun R.; Kim, Jin Young
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 21
  • DOI: 10.5194/acp-18-16121-2018

Revising the slant column density retrieval of nitrogen dioxide observed by the Ozone Monitoring Instrument: REVISED NO
journal, June 2015

  • Marchenko, S.; Krotkov, N. A.; Lamsal, L. N.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 11
  • DOI: 10.1002/2014JD022913

NO 2 column amounts from ground-based Pandora and MFDOAS spectrometers using the direct-sun DOAS technique: Intercomparisons and application to OMI validation
journal, January 2009

  • Herman, Jay; Cede, Alexander; Spinei, Elena
  • Journal of Geophysical Research, Vol. 114, Issue D13
  • DOI: 10.1029/2009JD011848

Scaling Relationship for NO 2 Pollution and Urban Population Size: A Satellite Perspective
journal, June 2013

  • Lamsal, L. N.; Martin, R. V.; Parrish, D. D.
  • Environmental Science & Technology, Vol. 47, Issue 14
  • DOI: 10.1021/es400744g

Understanding Air Pollution from Induced Traffic during and after the Construction of a New Highway: Case Study of Highway 25 in Montreal
journal, January 2017

  • Amin, Md. Shohel Reza; Tamima, Umma; Amador Jimenez, Luis
  • Journal of Advanced Transportation, Vol. 2017
  • DOI: 10.1155/2017/5161308

Multiscale observations of CO2, 13CO2, and pollutants at Four Corners for emission verification and attribution
journal, May 2014

  • Lindenmaier, R.; Dubey, M. K.; Henderson, B. G.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 23
  • DOI: 10.1073/pnas.1321883111

Estimating surface NO2 and SO2 mixing ratios from fast-response total column observations and potential application to geostationary missions
journal, May 2013


High‐resolution NO 2 observations from the Airborne Compact Atmospheric Mapper: Retrieval and validation
journal, February 2017

  • Lamsal, L. N.; Janz, S. J.; Krotkov, N. A.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 3
  • DOI: 10.1002/2016JD025483

Agriculture is a major source of NO x pollution in California
journal, January 2018


NO x lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations
journal, January 2016

  • Liu, Fei; Beirle, Steffen; Zhang, Qiang
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 8
  • DOI: 10.5194/acp-16-5283-2016

A top-down assessment using OMI NO 2 suggests an underestimate in the NO x emissions inventory in Seoul, South Korea, during KORUS-AQ
journal, January 2019

  • Goldberg, Daniel L.; Saide, Pablo E.; Lamsal, Lok N.
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 3
  • DOI: 10.5194/acp-19-1801-2019

A space-based, high-resolution view of notable changes in urban NO x pollution around the world (2005-2014) : NOTABLE CHANGES IN URBAN NO
journal, January 2016

  • Duncan, Bryan N.; Lamsal, Lok N.; Thompson, Anne M.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 2
  • DOI: 10.1002/2015JD024121

Chronic Obstructive Pulmonary Disease and Long-Term Exposure to Traffic-related Air Pollution: A Cohort Study
journal, February 2011

  • Andersen, Zorana J.; Hvidberg, Martin; Jensen, Steen S.
  • American Journal of Respiratory and Critical Care Medicine, Vol. 183, Issue 4
  • DOI: 10.1164/rccm.201006-0937OC

Improved slant column density retrieval of nitrogen dioxide and formaldehyde for OMI and GOME-2A from QA4ECV: intercomparison, uncertainty characterisation, and trends
journal, January 2018

  • Zara, Marina; Boersma, K. Folkert; De Smedt, Isabelle
  • Atmospheric Measurement Techniques, Vol. 11, Issue 7
  • DOI: 10.5194/amt-11-4033-2018

Comparison of ozone retrievals from the Pandora spectrometer system and Dobson spectrophotometer in Boulder, Colorado
journal, January 2015


Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions
journal, January 2015


Observationally derived transport diagnostics for the lowermost stratosphere and their application to the GMI chemistry and transport model
journal, January 2007

  • Strahan, S. E.; Duncan, B. N.; Hoor, P.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 9
  • DOI: 10.5194/acp-7-2435-2007

The ozone monitoring instrument
journal, May 2006

  • Levelt, P. F.; van den Oord, G. H. J.; Dobber, M. R.
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, Issue 5
  • DOI: 10.1109/TGRS.2006.872333

Error analysis for tropospheric NO 2 retrieval from space : ERROR ANALYSIS FOR TROPOSPHERIC NO
journal, February 2004

  • Boersma, K. F.; Eskes, H. J.; Brinksma, E. J.
  • Journal of Geophysical Research: Atmospheres, Vol. 109, Issue D4
  • DOI: 10.1029/2003JD003962

Evaluation of OMI operational standard NO 2 column retrievals using in situ and surface-based NO 2 observations
journal, January 2014

  • Lamsal, L. N.; Krotkov, N. A.; Celarier, E. A.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 21
  • DOI: 10.5194/acp-14-11587-2014

Nitric oxide and cancer: a review
journal, May 2013

  • Korde Choudhari, Sheetal; Chaudhary, Minal; Bagde, Sachin
  • World Journal of Surgical Oncology, Vol. 11, Issue 1
  • DOI: 10.1186/1477-7819-11-118

The Dawn of Geostationary Air Quality Monitoring: Case Studies From Seoul and Los Angeles
journal, August 2018

  • Judd, Laura M.; Al-Saadi, Jassim A.; Valin, Lukas C.
  • Frontiers in Environmental Science, Vol. 6
  • DOI: 10.3389/fenvs.2018.00085

LOWESS: A Program for Smoothing Scatterplots by Robust Locally Weighted Regression
journal, February 1981

  • Cleveland, William S.
  • The American Statistician, Vol. 35, Issue 1
  • DOI: 10.2307/2683591

An improved tropospheric NO 2 column retrieval algorithm for the Ozone Monitoring Instrument
journal, January 2011

  • Boersma, K. F.; Eskes, H. J.; Dirksen, R. J.
  • Atmospheric Measurement Techniques, Vol. 4, Issue 9
  • DOI: 10.5194/amt-4-1905-2011

Comparison of OMI NO 2 observations and their seasonal and weekly cycles with ground-based measurements in Helsinki
journal, January 2016

  • Ialongo, Iolanda; Herman, Jay; Krotkov, Nick
  • Atmospheric Measurement Techniques, Vol. 9, Issue 10
  • DOI: 10.5194/amt-9-5203-2016

Representativeness errors in comparing chemistry transport and chemistry climate models with satellite UV–Vis tropospheric column retrievals
journal, January 2016

  • Boersma, K. F.; Vinken, G. C. M.; Eskes, H. J.
  • Geoscientific Model Development, Vol. 9, Issue 2
  • DOI: 10.5194/gmd-9-875-2016

Evaluation of stratospheric NO 2 retrieved from the Ozone Monitoring Instrument: Intercomparison, diurnal cycle, and trending
journal, January 2011

  • Dirksen, Ruud J.; Boersma, K. Folkert; Eskes, Henk J.
  • Journal of Geophysical Research, Vol. 116, Issue D8
  • DOI: 10.1029/2010JD014943

An evaluation of CMAQ NO 2 using observed chemistry-meteorology correlations : CMAQ EVALUATION WITH NO
journal, November 2015

  • Harkey, Monica; Holloway, Tracey; Oberman, Jacob
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 22
  • DOI: 10.1002/2015JD023316

The version 3 OMI NO 2 standard product
journal, January 2017

  • Krotkov, Nickolay A.; Lamsal, Lok N.; Celarier, Edward A.
  • Atmospheric Measurement Techniques, Vol. 10, Issue 9
  • DOI: 10.5194/amt-10-3133-2017

Observationally derived transport diagnostics for the lowermost stratosphere and their application to the GMI chemistry and transport model
journal, January 2007

  • Strahan, S. E.; Duncan, B. N.; Hoor, P.
  • Atmospheric Chemistry and Physics Discussions, Vol. 7, Issue 1
  • DOI: 10.5194/acpd-7-1449-2007

Evaluating the impact of spatial resolution on tropospheric NO2 column comparisons within urban areas using high-resolution airborne data
journal, January 2019

  • Judd, Laura M.; Al-Saadi, Jassim A.; Janz, Scott J.
  • Atmospheric Measurement Techniques, Vol. 12, Issue 11
  • DOI: 10.5194/amt-12-6091-2019