skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on November 6, 2020

Title: 3D Printing of Compositional Gradients Using the Microfluidic Circuit Analogy

Abstract

3D printing of structures with compositional gradients requires accurate dispensing control to achieve desired profiles. Here, empirical data are used with a model based on the microfluidic circuit analogy (MCA) to project dispense rate profiles that yield improved compositional accuracy in the printed part. Since minor variation in the experimental setup for each printing session can result in significant changes, a calibration procedure is developed to measure the system response. This calibration enables the extraction of the empirical MCA model parameters specific to each print session. Using the empirical parameters, the MCA model then can be used to predict appropriate dispense rates for the desired composition profile and toolpath of interest. Here, the MCA model is validated experimentally by direct ink write 3D printing of compositional gradients using viscoelastic polydimethylsiloxane inks and is shown to improve accuracy to desired profile by a factor of 2–5. This approach enables a new route to 3D print structures with arbitrarily complex compositional gradients.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1573945
Alternate Identifier(s):
OSTI ID: 1573287
Report Number(s):
LLNL-JRNL-783138
Journal ID: ISSN 2365-709X; 976792
Grant/Contract Number:  
AC52-07NA27344; AC52‐07NA27344; LLNL‐JRNL‐783138; 19‐ERD‐020
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials Technologies
Additional Journal Information:
Journal Name: Advanced Materials Technologies; Journal ID: ISSN 2365-709X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 3D printing; direct ink writing; multimaterial printing

Citation Formats

Nguyen, Du T., Yee, Timothy D., Dudukovic, Nikola A., Sasan, Koroush, Jaycox, Adam W., Golobic, Alexandra M., Duoss, Eric B., and Dylla‐Spears, Rebecca. 3D Printing of Compositional Gradients Using the Microfluidic Circuit Analogy. United States: N. p., 2019. Web. doi:10.1002/admt.201900784.
Nguyen, Du T., Yee, Timothy D., Dudukovic, Nikola A., Sasan, Koroush, Jaycox, Adam W., Golobic, Alexandra M., Duoss, Eric B., & Dylla‐Spears, Rebecca. 3D Printing of Compositional Gradients Using the Microfluidic Circuit Analogy. United States. doi:10.1002/admt.201900784.
Nguyen, Du T., Yee, Timothy D., Dudukovic, Nikola A., Sasan, Koroush, Jaycox, Adam W., Golobic, Alexandra M., Duoss, Eric B., and Dylla‐Spears, Rebecca. Wed . "3D Printing of Compositional Gradients Using the Microfluidic Circuit Analogy". United States. doi:10.1002/admt.201900784.
@article{osti_1573945,
title = {3D Printing of Compositional Gradients Using the Microfluidic Circuit Analogy},
author = {Nguyen, Du T. and Yee, Timothy D. and Dudukovic, Nikola A. and Sasan, Koroush and Jaycox, Adam W. and Golobic, Alexandra M. and Duoss, Eric B. and Dylla‐Spears, Rebecca},
abstractNote = {3D printing of structures with compositional gradients requires accurate dispensing control to achieve desired profiles. Here, empirical data are used with a model based on the microfluidic circuit analogy (MCA) to project dispense rate profiles that yield improved compositional accuracy in the printed part. Since minor variation in the experimental setup for each printing session can result in significant changes, a calibration procedure is developed to measure the system response. This calibration enables the extraction of the empirical MCA model parameters specific to each print session. Using the empirical parameters, the MCA model then can be used to predict appropriate dispense rates for the desired composition profile and toolpath of interest. Here, the MCA model is validated experimentally by direct ink write 3D printing of compositional gradients using viscoelastic polydimethylsiloxane inks and is shown to improve accuracy to desired profile by a factor of 2–5. This approach enables a new route to 3D print structures with arbitrarily complex compositional gradients.},
doi = {10.1002/admt.201900784},
journal = {Advanced Materials Technologies},
number = ,
volume = ,
place = {United States},
year = {2019},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on November 6, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

3D-Printed Transparent Glass
journal, April 2017

  • Nguyen, Du T.; Meyers, Cameron; Yee, Timothy D.
  • Advanced Materials, Vol. 29, Issue 26
  • DOI: 10.1002/adma.201701181

3D Printed Optical Quality Silica and Silica-Titania Glasses from Sol-Gel Feedstocks
journal, January 2018

  • Destino, Joel F.; Dudukovic, Nikola A.; Johnson, Michael A.
  • Advanced Materials Technologies, Vol. 3, Issue 6
  • DOI: 10.1002/admt.201700323

Predicting Nanoparticle Suspension Viscoelasticity for Multimaterial 3D Printing of Silica–Titania Glass
journal, July 2018

  • Dudukovic, Nikola A.; Wong, Lana L.; Nguyen, Du T.
  • ACS Applied Nano Materials, Vol. 1, Issue 8
  • DOI: 10.1021/acsanm.8b00821

Ultralight, ultrastiff mechanical metamaterials
journal, June 2014


Shape-morphing composites with designed micro-architectures
journal, June 2016

  • Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep27933

Custom 3D Printable Silicones with Tunable Stiffness
journal, December 2017

  • Durban, Matthew M.; Lenhardt, Jeremy M.; Wu, Amanda S.
  • Macromolecular Rapid Communications, Vol. 39, Issue 4
  • DOI: 10.1002/marc.201700563

Additive manufacturing of polymer-derived ceramics
journal, December 2015


Biomimetic 4D printing
journal, January 2016

  • Sydney Gladman, A.; Matsumoto, Elisabetta A.; Nuzzo, Ralph G.
  • Nature Materials, Vol. 15, Issue 4
  • DOI: 10.1038/nmat4544

3D Printing of Materials with Tunable Failure via Bioinspired Mechanical Gradients
journal, January 2018

  • Kokkinis, Dimitri; Bouville, Florian; Studart, André R.
  • Advanced Materials, Vol. 30, Issue 19
  • DOI: 10.1002/adma.201705808

Printed Microfluidics
journal, February 2017

  • Dixon, Christopher; Lamanna, Julian; Wheeler, Aaron R.
  • Advanced Functional Materials, Vol. 27, Issue 11
  • DOI: 10.1002/adfm.201604824

Rapid Continuous Multimaterial Extrusion Bioprinting
journal, November 2016

  • Liu, Wanjun; Zhang, Yu Shrike; Heinrich, Marcel A.
  • Advanced Materials, Vol. 29, Issue 3
  • DOI: 10.1002/adma.201604630

Multi-Material Direct Ink Writing (DIW) for Complex 3D Metallic Structures with Removable Supports
journal, January 2019

  • Xu, Chao; Quinn, Bronagh; Lebel, Louis Laberge
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 8
  • DOI: 10.1021/acsami.8b19986

Multi-metal electrohydrodynamic redox 3D printing at the submicron scale
journal, April 2019


Fast‐Response, Stiffness‐Tunable Soft Actuator by Hybrid Multimaterial 3D Printing
journal, January 2019

  • Zhang, Yuan‐Fang; Zhang, Ningbin; Hingorani, Hardik
  • Advanced Functional Materials, Vol. 29, Issue 15
  • DOI: 10.1002/adfm.201806698

Multimaterial Microfluidic 3D Printing of Textured Composites with Liquid Inclusions
journal, November 2018


Active Mixing of Reactive Materials for 3D Printing
journal, May 2019

  • Golobic, Alexandra M.; Durban, Matthew D.; Fisher, Scott E.
  • Advanced Engineering Materials, Vol. 21, Issue 8
  • DOI: 10.1002/adem.201900147

Active Mixing of Disparate Inks for Multimaterial 3D Printing
journal, April 2019

  • Ortega, Jason M.; Golobic, Melody; Sain, John D.
  • Advanced Materials Technologies, Vol. 4, Issue 7
  • DOI: 10.1002/admt.201800717

Active mixing of complex fluids at the microscale
journal, September 2015

  • Ober, Thomas J.; Foresti, Daniele; Lewis, Jennifer A.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 40
  • DOI: 10.1073/pnas.1509224112

Functionally graded materials: A review of fabrication and properties
journal, December 2016


3D printing of materials with spatially non-linearly varying properties
journal, October 2018


Microfluidic Printheads for Multimaterial 3D Printing of Viscoelastic Inks
journal, April 2015

  • Hardin, James O.; Ober, Thomas J.; Valentine, Alexander D.
  • Advanced Materials, Vol. 27, Issue 21
  • DOI: 10.1002/adma.201500222

A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks
journal, December 2017


Design of pressure-driven microfluidic networks using electric circuit analogy
journal, January 2012

  • Oh, Kwang W.; Lee, Kangsun; Ahn, Byungwook
  • Lab Chip, Vol. 12, Issue 3
  • DOI: 10.1039/C2LC20799K

Predicting the behavior of microfluidic circuits made from discrete elements
journal, October 2015

  • Bhargava, Krisna C.; Thompson, Bryant; Iqbal, Danish
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep15609

A scalable filtration method for high throughput screening based on cell deformability
journal, January 2019

  • Gill, Navjot Kaur; Ly, Chau; Nyberg, Kendra D.
  • Lab on a Chip, Vol. 19, Issue 2
  • DOI: 10.1039/C8LC00922H

Computer-aided design of resistance micro-fluidic circuits for 3D printing
journal, May 2018


Damping hydrodynamic fluctuations in microfluidic systems
journal, March 2018

  • Kalantarifard, Ali; Alizadeh Haghighi, Elnaz; Elbuken, Caglar
  • Chemical Engineering Science, Vol. 178
  • DOI: 10.1016/j.ces.2017.12.045