skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on June 3, 2020

Title: Wrap–Around Core–Shell Heterostructures of Layered Crystals

Abstract

Engineered heterostructures create new functionality by integrating dissimilar materials. Combining different 2D crystals naturally produces two distinct classes of heterostructures, vertical van der Waals (vdW) stacks or 2D sheets bonded laterally by covalent line interfaces. Here, when joining thicker layered crystals, the arising structural and topological conflicts can result in more complex geometries. Phase separation during one–pot synthesis of layered tin chalcogenides spontaneously creates core–shell structures in which large orthorhombic SnS crystals are enclosed in a wrap–around shell of trigonal SnS 2, forcing the coexistence of parallel vdW layering along with unconventional, orthogonally layered core–shell interfaces. Measurements of the optoelectronic properties establish anisotropic carrier separation near type II core–shell interfaces and extended long–wavelength light harvesting via spatially indirect interfacial absorption, making multifunctional layered core–shell structures attractive for energy–conversion applications.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [2]
  1. Univ. of Nebraska‐Lincoln, Lincoln, NE (United States). Dept. of Electrical and Computer Engineering
  2. Univ. of Nebraska‐Lincoln, Lincoln, NE (United States). Dept. of Mechanical and Materials Engineering
Publication Date:
Research Org.:
Univ. of Nebraska-Lincoln, Lincoln, NE (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; USDOE
OSTI Identifier:
1573812
Alternate Identifier(s):
OSTI ID: 1524105
Grant/Contract Number:  
SC0016343
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 31; Journal Issue: 29; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; charge transfer; heterostructures; interfaces; layered materials; light harvesting

Citation Formats

Sutter, Peter, Wang, Jia, and Sutter, Eli. Wrap–Around Core–Shell Heterostructures of Layered Crystals. United States: N. p., 2019. Web. doi:10.1002/adma.201902166.
Sutter, Peter, Wang, Jia, & Sutter, Eli. Wrap–Around Core–Shell Heterostructures of Layered Crystals. United States. doi:10.1002/adma.201902166.
Sutter, Peter, Wang, Jia, and Sutter, Eli. Mon . "Wrap–Around Core–Shell Heterostructures of Layered Crystals". United States. doi:10.1002/adma.201902166.
@article{osti_1573812,
title = {Wrap–Around Core–Shell Heterostructures of Layered Crystals},
author = {Sutter, Peter and Wang, Jia and Sutter, Eli},
abstractNote = {Engineered heterostructures create new functionality by integrating dissimilar materials. Combining different 2D crystals naturally produces two distinct classes of heterostructures, vertical van der Waals (vdW) stacks or 2D sheets bonded laterally by covalent line interfaces. Here, when joining thicker layered crystals, the arising structural and topological conflicts can result in more complex geometries. Phase separation during one–pot synthesis of layered tin chalcogenides spontaneously creates core–shell structures in which large orthorhombic SnS crystals are enclosed in a wrap–around shell of trigonal SnS2, forcing the coexistence of parallel vdW layering along with unconventional, orthogonally layered core–shell interfaces. Measurements of the optoelectronic properties establish anisotropic carrier separation near type II core–shell interfaces and extended long–wavelength light harvesting via spatially indirect interfacial absorption, making multifunctional layered core–shell structures attractive for energy–conversion applications.},
doi = {10.1002/adma.201902166},
journal = {Advanced Materials},
number = 29,
volume = 31,
place = {United States},
year = {2019},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on June 3, 2020
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures
journal, February 2012


Electroluminescence and Photocurrent Generation from Atomically Sharp WSe 2 /MoS 2 Heterojunction p–n Diodes
journal, September 2014

  • Cheng, Rui; Li, Dehui; Zhou, Hailong
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl502075n

Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures
journal, September 2017


Atomically thin p–n junctions with van der Waals heterointerfaces
journal, August 2014

  • Lee, Chul-Ho; Lee, Gwan-Hyoung; van der Zande, Arend M.
  • Nature Nanotechnology, Vol. 9, Issue 9
  • DOI: 10.1038/nnano.2014.150

Vertical and in-plane heterostructures from WS2/MoS2 monolayers
journal, September 2014

  • Gong, Yongji; Lin, Junhao; Wang, Xingli
  • Nature Materials, Vol. 13, Issue 12, p. 1135-1142
  • DOI: 10.1038/nmat4091

Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures
journal, February 2015

  • Rivera, Pasqual; Schaibley, John R.; Jones, Aaron M.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7242

Graphene and boron nitride lateral heterostructures for atomically thin circuitry
journal, August 2012

  • Levendorf, Mark P.; Kim, Cheol-Joo; Brown, Lola
  • Nature, Vol. 488, Issue 7413, p. 627-632
  • DOI: 10.1038/nature11408

Interface Formation in Monolayer Graphene-Boron Nitride Heterostructures
journal, January 2012

  • Sutter, P.; Cortes, R.; Lahiri, J.
  • Nano Letters, Vol. 12, Issue 9
  • DOI: 10.1021/nl302398m

Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface
journal, July 2015


Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions
journal, September 2014

  • Duan, Xidong; Wang, Chen; Shaw, Jonathan C.
  • Nature Nanotechnology, Vol. 9, Issue 12, p. 1024-1030
  • DOI: 10.1038/nnano.2014.222

Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices
journal, August 2017


One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy
journal, January 2018

  • Sahoo, Prasana K.; Memaran, Shahriar; Xin, Yan
  • Nature, Vol. 553, Issue 7686
  • DOI: 10.1038/nature25155

Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications
journal, December 2011

  • Ghosh Chaudhuri, Rajib; Paria, Santanu
  • Chemical Reviews, Vol. 112, Issue 4
  • DOI: 10.1021/cr100449n

Epitaxial core–shell and core–multishell nanowire heterostructures
journal, November 2002

  • Lauhon, Lincoln J.; Gudiksen, Mark S.; Wang, Deli
  • Nature, Vol. 420, Issue 6911, p. 57-61
  • DOI: 10.1038/nature01141

Wave Function Engineering for Ultrafast Charge Separation and Slow Charge Recombination in Type II Core/Shell Quantum Dots
journal, June 2011

  • Zhu, Haiming; Song, Nianhui; Lian, Tianquan
  • Journal of the American Chemical Society, Vol. 133, Issue 22
  • DOI: 10.1021/ja202752s

Multifunctional composite core–shell nanoparticles
journal, January 2011

  • Wei, Suying; Wang, Qiang; Zhu, Jiahua
  • Nanoscale, Vol. 3, Issue 11
  • DOI: 10.1039/c1nr11000d

Nanoparticle-Templated Thickness Controlled Growth, Thermal Stability, and Decomposition of Ultrathin Tin Sulfide Plates
journal, March 2019


Epitaxy of Layered Orthorhombic SnS-SnS x Se (1− x ) Core-Shell Heterostructures with Anisotropic Photoresponse
journal, April 2016

  • Xia, Jing; Zhu, Dandan; Li, Xuanze
  • Advanced Functional Materials, Vol. 26, Issue 26
  • DOI: 10.1002/adfm.201600699

Thermal decomposition of SnS 2 and SnSe 2 : Novel molecular‐beam epitaxy sources for sulfur and selenium
journal, May 1992

  • Shimada, Toshihiro; Ohuchi, Fumio S.; Parkinson, Bruce A.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 10, Issue 3
  • DOI: 10.1116/1.578184

3.88% Efficient Tin Sulfide Solar Cells using Congruent Thermal Evaporation
journal, August 2014

  • Steinmann, Vera; Jaramillo, R.; Hartman, Katy
  • Advanced Materials, Vol. 26, Issue 44
  • DOI: 10.1002/adma.201402219

Band Alignments, Valence Bands, and Core Levels in the Tin Sulfides SnS, SnS 2 , and Sn 2 S 3 : Experiment and Theory
journal, May 2016


One-step CVD fabrication and optoelectronic properties of SnS 2 /SnS vertical heterostructures
journal, January 2018

  • Li, Mingling; Zhu, Yunsong; Li, Taishen
  • Inorganic Chemistry Frontiers, Vol. 5, Issue 8
  • DOI: 10.1039/C8QI00251G

Accessing valley degree of freedom in bulk Tin(II) sulfide at room temperature
journal, April 2018


Luminescence of defects in the structural transformation of layered tin dichalcogenides
journal, December 2017

  • Sutter, P.; Komsa, H. -P.; Krasheninnikov, A. V.
  • Applied Physics Letters, Vol. 111, Issue 26
  • DOI: 10.1063/1.5007060

Germanium Sulfide Nano-Optics Probed by STEM-Cathodoluminescence Spectroscopy
journal, June 2018


Electron-Beam Induced Transformations of Layered Tin Dichalcogenides
journal, June 2016


Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides
journal, April 2014

  • Fang, H.; Battaglia, C.; Carraro, C.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 17
  • DOI: 10.1073/pnas.1405435111

Indirect excitons in van der Waals heterostructures at room temperature
journal, May 2018


Freestanding Tin Disulfide Single-Layers Realizing Efficient Visible-Light Water Splitting
journal, July 2012

  • Sun, Yongfu; Cheng, Hao; Gao, Shan
  • Angewandte Chemie International Edition, Vol. 51, Issue 35
  • DOI: 10.1002/anie.201204675

Electronic and optical properties of single crystal SnS 2 : an earth-abundant disulfide photocatalyst
journal, January 2016

  • Burton, Lee A.; Whittles, Thomas J.; Hesp, David
  • Journal of Materials Chemistry A, Vol. 4, Issue 4
  • DOI: 10.1039/C5TA08214E