skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Surrogate modeling of advanced computer simulations using deep Gaussian processes

Publication Date:
Sponsoring Org.:
OSTI Identifier:
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Reliability Engineering and System Safety
Additional Journal Information:
Journal Name: Reliability Engineering and System Safety Journal Volume: 195 Journal Issue: C; Journal ID: ISSN 0951-8320
Country of Publication:
United Kingdom

Citation Formats

Radaideh, Majdi I., and Kozlowski, Tomasz. Surrogate modeling of advanced computer simulations using deep Gaussian processes. United Kingdom: N. p., 2020. Web.
Radaideh, Majdi I., & Kozlowski, Tomasz. Surrogate modeling of advanced computer simulations using deep Gaussian processes. United Kingdom.
Radaideh, Majdi I., and Kozlowski, Tomasz. Sun . "Surrogate modeling of advanced computer simulations using deep Gaussian processes". United Kingdom.
title = {Surrogate modeling of advanced computer simulations using deep Gaussian processes},
author = {Radaideh, Majdi I. and Kozlowski, Tomasz},
abstractNote = {},
doi = {10.1016/j.ress.2019.106731},
journal = {Reliability Engineering and System Safety},
number = C,
volume = 195,
place = {United Kingdom},
year = {2020},
month = {3}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Linear Regression Metamodeling as a Tool to Summarize and Present Simulation Model Results
journal, June 2013

  • Jalal, Hawre; Dowd, Bryan; Sainfort, François
  • Medical Decision Making, Vol. 33, Issue 7
  • DOI: 10.1177/0272989X13492014

Multidimensional multiphysics simulation of nuclear fuel behavior
journal, April 2012

Validation of regression metamodels in simulation: Bootstrap approach
journal, April 2006

  • Kleijnen, Jack P. C.; Deflandre, David
  • European Journal of Operational Research, Vol. 170, Issue 1
  • DOI: 10.1016/j.ejor.2004.06.018

Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification
journal, December 2018

Overview of hybrid subspace methods for uncertainty quantification, sensitivity analysis
journal, February 2013

Review of Metamodeling Techniques in Support of Engineering Design Optimization
journal, May 2006

  • Wang, G. Gary; Shan, S.
  • Journal of Mechanical Design, Vol. 129, Issue 4
  • DOI: 10.1115/1.2429697

Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian Process, Part 2: Application to TRACE
journal, August 2018

Comparison of Gaussian process modeling software
journal, April 2018

  • Erickson, Collin B.; Ankenman, Bruce E.; Sanchez, Susan M.
  • European Journal of Operational Research, Vol. 266, Issue 1
  • DOI: 10.1016/j.ejor.2017.10.002

Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification
journal, August 2018

Use of Kriging Models to Approximate Deterministic Computer Models
journal, April 2005

  • Martin, Jay D.; Simpson, Timothy W.
  • AIAA Journal, Vol. 43, Issue 4
  • DOI: 10.2514/1.8650

Shapley effect application for variance-based sensitivity analysis of the few-group cross-sections
journal, July 2019

Factorial Sampling Plans for Preliminary Computational Experiments
journal, May 1991

Bayesian calibration of computer models
journal, August 2001

  • Kennedy, Marc C.; O'Hagan, Anthony
  • Journal of the Royal Statistical Society: Series B (Statistical Methodology), Vol. 63, Issue 3
  • DOI: 10.1111/1467-9868.00294

A review of surrogate models and their application to groundwater modeling: SURROGATES OF GROUNDWATER MODELS
journal, August 2015

  • Asher, M. J.; Croke, B. F. W.; Jakeman, A. J.
  • Water Resources Research, Vol. 51, Issue 8
  • DOI: 10.1002/2015WR016967

A survey of deep neural network architectures and their applications
journal, April 2017

Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces
journal, January 2014

  • Constantine, Paul G.; Dow, Eric; Wang, Qiqi
  • SIAM Journal on Scientific Computing, Vol. 36, Issue 4
  • DOI: 10.1137/130916138

Recent advances in surrogate-based optimization
journal, January 2009

The Best Estimate Plus Uncertainty (BEPU) approach in licensing of current nuclear reactors
journal, July 2012

Surrogate-based methods for black-box optimization: Surrogate-based methods for black-box optimization
journal, April 2016

  • Vu, Ky Khac; D'Ambrosio, Claudia; Hamadi, Youssef
  • International Transactions in Operational Research, Vol. 24, Issue 3
  • DOI: 10.1111/itor.12292

Efficient global sensitivity analysis for flow-induced vibration of a nuclear reactor assembly using Kriging surrogates
journal, January 2019

A new framework for sampling-based uncertainty quantification of the six-group reactor kinetic parameters
journal, May 2019

Estimating Sobol sensitivity indices using correlations
journal, November 2012

Implicit Treatment of Technical Specification and Thermal Hydraulic Parameter Uncertainties in Gaussian Process Model to Estimate Safety Margin
journal, June 2016

Deep learning in neural networks: An overview
journal, January 2015

Integrated framework for model assessment and advanced uncertainty quantification of nuclear computer codes under Bayesian statistics
journal, September 2019

  • Radaideh, Majdi I.; Borowiec, Katarzyna; Kozlowski, Tomasz
  • Reliability Engineering & System Safety, Vol. 189
  • DOI: 10.1016/j.ress.2019.04.020

Advanced BWR criticality safety part I: Model development, model benchmarking, and depletion with uncertainty analysis
journal, May 2019

Uncertainty Quantification, Sensitivity Analysis, and Data Assimilation for Nuclear Systems Simulation
journal, December 2008

Feasibility of ANFIS towards multiclass event classification in PFBR considering dimensionality reduction using PCA
journal, January 2017

Deep recurrent Gaussian processes for outlier-robust system identification
journal, December 2017

A machine learning approach for efficient uncertainty quantification using multiscale methods
journal, February 2018

Uncertainty quantification and sensitivity analysis with CASL Core Simulator VERA-CS
journal, September 2016

An efficient methodology for modeling complex computer codes with Gaussian processes
journal, June 2008

  • Marrel, Amandine; Iooss, Bertrand; Van Dorpe, François
  • Computational Statistics & Data Analysis, Vol. 52, Issue 10
  • DOI: 10.1016/j.csda.2008.03.026