skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on September 26, 2020

Title: Effects of isothermal stratification strength on vorticity dynamics for single-mode compressible Rayleigh-Taylor instability

Abstract

The effects of isothermal initial stratification on the dynamics of the vorticity for single-mode Rayleigh-Taylor instability (RTI) are examined using two-dimensional fully compressible wavelet-based direct numerical simulations. Here, the simulations model low Atwood number ( A = 0.04) RTI development for four different initial stratification strengths, corresponding to Mach numbers from 0.3 (weakly stratified) to 1.2 (strongly stratified), and for three different Reynolds numbers, from 25 500 to 102 000. Here, the Mach number is based on the Atwood-independent gravity wave speed and characterizes the strength of the initial stratification. All simulations use adaptive wavelet-based mesh refinement to achieve very fine spatial resolutions at relatively low computational cost. For all stratifications, the RTI bubble and spike go through the exponential growth regime, followed by a slowing of the RTI evolution.

Authors:
 [1];  [1];  [2]; ORCiD logo [3]
  1. Univ. of Colorado, Boulder, CO (United States)
  2. Univ. of Illinois, Chicago, IL (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1573339
Report Number(s):
LA-UR-18-31598
Journal ID: ISSN 2469-990X
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Fluids
Additional Journal Information:
Journal Volume: 4; Journal Issue: 9; Journal ID: ISSN 2469-990X
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Wieland, Scott A., Hamlington, Peter E., Reckinger, Scott J., and Livescu, Daniel. Effects of isothermal stratification strength on vorticity dynamics for single-mode compressible Rayleigh-Taylor instability. United States: N. p., 2019. Web. doi:10.1103/PhysRevFluids.4.093905.
Wieland, Scott A., Hamlington, Peter E., Reckinger, Scott J., & Livescu, Daniel. Effects of isothermal stratification strength on vorticity dynamics for single-mode compressible Rayleigh-Taylor instability. United States. doi:10.1103/PhysRevFluids.4.093905.
Wieland, Scott A., Hamlington, Peter E., Reckinger, Scott J., and Livescu, Daniel. Thu . "Effects of isothermal stratification strength on vorticity dynamics for single-mode compressible Rayleigh-Taylor instability". United States. doi:10.1103/PhysRevFluids.4.093905.
@article{osti_1573339,
title = {Effects of isothermal stratification strength on vorticity dynamics for single-mode compressible Rayleigh-Taylor instability},
author = {Wieland, Scott A. and Hamlington, Peter E. and Reckinger, Scott J. and Livescu, Daniel},
abstractNote = {The effects of isothermal initial stratification on the dynamics of the vorticity for single-mode Rayleigh-Taylor instability (RTI) are examined using two-dimensional fully compressible wavelet-based direct numerical simulations. Here, the simulations model low Atwood number (A = 0.04) RTI development for four different initial stratification strengths, corresponding to Mach numbers from 0.3 (weakly stratified) to 1.2 (strongly stratified), and for three different Reynolds numbers, from 25 500 to 102 000. Here, the Mach number is based on the Atwood-independent gravity wave speed and characterizes the strength of the initial stratification. All simulations use adaptive wavelet-based mesh refinement to achieve very fine spatial resolutions at relatively low computational cost. For all stratifications, the RTI bubble and spike go through the exponential growth regime, followed by a slowing of the RTI evolution.},
doi = {10.1103/PhysRevFluids.4.093905},
journal = {Physical Review Fluids},
number = 9,
volume = 4,
place = {United States},
year = {2019},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on September 26, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Compressible Rayleigh–Taylor instability
journal, January 1983


The mixing transition in turbulent flows
journal, April 2000


Knudsen-number dependence of two-dimensional single-mode Rayleigh-Taylor fluid instabilities
journal, July 2015


Adaptive wavelet collocation method simulations of Rayleigh–Taylor instability
journal, December 2010


Reynolds- and Mach-number effects in canonical shock–turbulence interaction
journal, February 2013

  • Larsson, Johan; Bermejo-Moreno, Ivan; Lele, Sanjiva K.
  • Journal of Fluid Mechanics, Vol. 717
  • DOI: 10.1017/jfm.2012.573

Comprehensive numerical methodology for direct numerical simulations of compressible Rayleigh–Taylor instability
journal, May 2016

  • Reckinger, Scott J.; Livescu, Daniel; Vasilyev, Oleg V.
  • Journal of Computational Physics, Vol. 313
  • DOI: 10.1016/j.jcp.2015.11.002

Rayleigh–Taylor instability in cylindrical geometry with compressible fluids
journal, October 2008

  • Yu, Huidan; Livescu, Daniel
  • Physics of Fluids, Vol. 20, Issue 10
  • DOI: 10.1063/1.2991431

Compressibility effects on the Rayleigh–Taylor instability growth between immiscible fluids
journal, January 2004


Parallel adaptive wavelet collocation method for PDEs
journal, October 2015

  • Nejadmalayeri, Alireza; Vezolainen, Alexei; Brown-Dymkoski, Eric
  • Journal of Computational Physics, Vol. 298
  • DOI: 10.1016/j.jcp.2015.05.028

Two-equation and multi-fluid turbulence models for Rayleigh–Taylor mixing
journal, December 2015


High-Reynolds number Rayleigh–Taylor turbulence
journal, January 2009


Efficient mixing in stratified flows: experimental study of a Rayleigh–Taylor unstable interface within an otherwise stable stratification
journal, September 2014

  • Davies Wykes, Megan S.; Dalziel, Stuart B.
  • Journal of Fluid Mechanics, Vol. 756
  • DOI: 10.1017/jfm.2014.308

Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere
journal, January 1997


Effect of compressibility on the Rayleigh–Taylor instability
journal, January 1983


Compressibility effects on the Rayleigh-Taylor instability between miscible fluids
journal, August 2007


Three‐dimensional Numerical Simulations of Rayleigh‐Taylor Unstable Flames in Type Ia Supernovae
journal, October 2005

  • Zingale, M.; Woosley, S. E.; Rendleman, C. A.
  • The Astrophysical Journal, Vol. 632, Issue 2
  • DOI: 10.1086/433164

Vorticity and mixing in Rayleigh–Taylor Boussinesq turbulence
journal, August 2016

  • Schneider, Nicolas; Gauthier, Serge
  • Journal of Fluid Mechanics, Vol. 802
  • DOI: 10.1017/jfm.2016.461

Viscous effects on the Rayleigh-Taylor instability with background temperature gradient
journal, July 2016

  • Gerashchenko, S.; Livescu, D.
  • Physics of Plasmas, Vol. 23, Issue 7
  • DOI: 10.1063/1.4959810

Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows
journal, August 2016


Interactions between turbulence and flames in premixed reacting flows
journal, December 2011

  • Hamlington, Peter E.; Poludnenko, Alexei Y.; Oran, Elaine S.
  • Physics of Fluids, Vol. 23, Issue 12
  • DOI: 10.1063/1.3671736

Second-Generation Wavelet Collocation Method for the Solution of Partial Differential Equations
journal, December 2000

  • Vasilyev, Oleg V.; Bowman, Christopher
  • Journal of Computational Physics, Vol. 165, Issue 2
  • DOI: 10.1006/jcph.2000.6638

A return toward equilibrium in a 2D Rayleigh–Taylor instability for compressible fluids with a multidomain adaptive Chebyshev method
journal, February 2008

  • Le Creurer, Benjamin; Gauthier, Serge
  • Theoretical and Computational Fluid Dynamics, Vol. 22, Issue 2
  • DOI: 10.1007/s00162-008-0076-3

Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion
journal, May 1998

  • Betti, R.; Goncharov, V. N.; McCrory, R. L.
  • Physics of Plasmas, Vol. 5, Issue 5
  • DOI: 10.1063/1.872802

An overview of Rayleigh-Taylor instability
journal, July 1984


The mixing transition in RayleighTaylor instability
journal, January 1999


Self-similarity and internal structure of turbulence induced by Rayleigh–Taylor instability
journal, November 1999


Visualization of Rayleigh–Taylor flows from Boussinesq approximation to fully compressible Navier–Stokes model
journal, January 2016


Late-time quadratic growth in single-mode Rayleigh-Taylor instability
journal, October 2012


Variable-density mixing in buoyancy-driven turbulence
journal, May 2008


Low- and zero-Mach-number models for Rayleigh–Taylor flows
journal, June 2017


Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws
journal, June 2001

  • Oron, D.; Arazi, L.; Kartoon, D.
  • Physics of Plasmas, Vol. 8, Issue 6
  • DOI: 10.1063/1.1362529

Rayleigh-Taylor instabilities and mixing in the helium star models for Type Ib/Ic supernovae
journal, February 1991

  • Hachisu, Izumi; Matsuda, Takuya; Nomoto, Ken'ichi
  • The Astrophysical Journal, Vol. 368
  • DOI: 10.1086/185940

Direct numerical simulation of canonical shock/turbulence interaction
journal, December 2009

  • Larsson, Johan; Lele, Sanjiva K.
  • Physics of Fluids, Vol. 21, Issue 12
  • DOI: 10.1063/1.3275856

Compressibility effects in some buoyant flows
journal, October 2008


Three‐Dimensional Simulations of the Deflagration Phase of the Gravitationally Confined Detonation Model of Type Ia Supernovae
journal, July 2008

  • Jordan IV, G. C.; Fisher, R. T.; Townsley, D. M.
  • The Astrophysical Journal, Vol. 681, Issue 2
  • DOI: 10.1086/588269

Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem
journal, December 2006


Rayleigh-Taylor mixing in supernova experiments
journal, October 2015

  • Swisher, N. C.; Kuranz, C. C.; Arnett, D.
  • Physics of Plasmas, Vol. 22, Issue 10
  • DOI: 10.1063/1.4931927

Compressible Rayleigh–Taylor turbulent mixing layer between Newtonian miscible fluids
journal, September 2017


Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh–Taylor instability
journal, November 2013

  • Livescu, D.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 371, Issue 2003
  • DOI: 10.1098/rsta.2012.0185

Direct-drive inertial confinement fusion: A review
journal, November 2015

  • Craxton, R. S.; Anderson, K. S.; Boehly, T. R.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4934714

Three-dimensional temporally resolved measurements of turbulence–flame interactions using orthogonal-plane cinema-stereoscopic PIV
journal, May 2009

  • Steinberg, Adam Michael; Driscoll, James F.; Ceccio, Steven L.
  • Experiments in Fluids, Vol. 47, Issue 3
  • DOI: 10.1007/s00348-009-0677-7

Anelastic Rayleigh–Taylor mixing layers
journal, June 2016


Experimental investigation of RayleighTaylor mixing at small Atwood numbers
journal, January 1999


Reynolds number effects on Rayleigh–Taylor instability with possible implications for type Ia supernovae
journal, July 2006

  • Cabot, William H.; Cook, Andrew W.
  • Nature Physics, Vol. 2, Issue 8
  • DOI: 10.1038/nphys361

Compressibility effects in Rayleigh–Taylor instability-induced flows
journal, April 2010

  • Gauthier, S.; Le Creurer, B.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 368, Issue 1916
  • DOI: 10.1098/rsta.2009.0139

Vorticity dynamics after the shock–turbulence interaction
journal, July 2015


Rayleigh–Taylor mixing in an otherwise stable stratification
journal, November 2011

  • Lawrie, Andrew G. W.; Dalziel, Stuart B.
  • Journal of Fluid Mechanics, Vol. 688
  • DOI: 10.1017/jfm.2011.398

Small Atwood number Rayleigh–Taylor experiments
journal, April 2010

  • Andrews, Malcolm J.; Dalziel, Stuart B.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 368, Issue 1916
  • DOI: 10.1098/rsta.2010.0007

Transition stages of Rayleigh–Taylor instability between miscible fluids
journal, September 2001


Wavelet Methods in Computational Fluid Dynamics
journal, January 2010