skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on October 21, 2020

Title: Large loss of CO 2 in winter observed across the northern permafrost region

Abstract

Recent warming in the Arctic, which has been amplified during the winter, greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO 2) 4. However, the amount of CO 2 released in winter is not known and has not been well represented by ecosystem models or empirically based estimates. In this paper, we synthesize regional in situ observations of CO 2 flux from Arctic and boreal soils to assess current and future winter carbon losses from the northern permafrost domain. We estimate a contemporary loss of 1,662 TgC per year from the permafrost region during the winter season (October–April). This loss is greater than the average growing season carbon uptake for this region estimated from process models (-1,032 TgC per year). Extending model predictions to warmer conditions up to 2100 indicates that winter CO 2 emissions will increase 17% under a moderate mitigation scenario—Representative Concentration Pathway 4.5—and 41% under business-as-usual emissions scenario—Representative Concentration Pathway 8.5. Finally, our results provide a baseline for winter CO 2 emissions from northern terrestrial regions and indicate that enhanced soil CO 2 loss due to winter warming may offset growing season carbon uptake under future climatic conditions.

Authors:
ORCiD logo [1];  [1];  [1]; ORCiD logo [1];  [1];  [2];  [3]; ORCiD logo [4];  [5];  [1]; ORCiD logo [6];  [7];  [8]; ORCiD logo [9]; ORCiD logo [10]; ORCiD logo [11]; ORCiD logo [12];  [13]; ORCiD logo [14];  [15] more »;  [16];  [17]; ORCiD logo [18];  [19]; ORCiD logo [20]; ORCiD logo [19]; ORCiD logo [21];  [22];  [23]; ORCiD logo [24]; ORCiD logo [25]; ORCiD logo [26];  [5]; ORCiD logo [27];  [16];  [28]; ORCiD logo [29]; ORCiD logo [20];  [30]; ORCiD logo [31]; ORCiD logo [32]; ORCiD logo [9];  [33]; ORCiD logo [7]; ORCiD logo [34];  [26];  [35]; ORCiD logo [19]; ORCiD logo [36];  [1];  [37]; ORCiD logo [38]; ORCiD logo [39]; ORCiD logo [39]; ORCiD logo [40];  [41];  [42]; ORCiD logo [43]; ORCiD logo [44]; ORCiD logo [45]; ORCiD logo [9]; ORCiD logo [8];  [46];  [47];  [48];  [49]; ORCiD logo [50];  [35];  [5];  [51]; ORCiD logo [44]; ORCiD logo [5]; ORCiD logo [52]; ORCiD logo [53]; ORCiD logo [54] « less
  1. Woods Hole Research Center, Falmouth, MA (United States)
  2. Univ. of Bayreuth (Germany)
  3. Univ. of Alaska, Anchorage, AK (United States). Environment and Natural Resources Inst.
  4. Brigham Young Univ., Provo, UT (United States). Dept. of Plant and Wildlife Sciences
  5. San Diego State Univ., CA (United States). Dept. of Biology
  6. Univ. of Gothenburg (Sweden). Dept. of Earth Sciences
  7. California Inst. of Technology (CalTech), Pasadena, CA (United States). Jet Propulsion Lab.
  8. Northern Arizona Univ., Flagstaff, AZ (United States). Center for Ecosystem Science and Society
  9. Aarhus Univ. (Denmark). Arctic Research Centre, Dept. of Bioscience
  10. Bjerknes Centre for Climate Research, Bergen (Norway). NORCE Norwegian Research Centre
  11. Columbia Univ., Palisades, NY (United States). Dept. of Earth and Environmental Sciences of Lamont-Doherty Earth Observatory
  12. Arctic Univ. of Norway, Tromsø (Norway). Dept. of Arctic and Marine Biology, Faculty of Biosciences, Fisheries, and Economics
  13. Stockholm Univ. (Sweden). Dept. of Geological Sciences, and Bolin Centre for Climate Research
  14. Univ. of California, Irvine, CA (United States). Earth System Science
  15. Pacific Geographical Inst., Cherskii (Russia). Northeast Science Station
  16. Univ. of Montana, Missoula, MT (United States). W.A. Franke College of Forestry & Conservation, Numerical Terradynamic Simulation Group
  17. Dalhousie Univ., Halifax, NS (Canada). Dept. of Earth Sciences
  18. Univ. of Copenhagen (Denmark). Center for Permafrost, Dept. of Geosciences and Natural Resource Management
  19. Univ. of Alaska, Fairbanks, AK (United States). Inst. of Arctic Biology
  20. Univ. of Copenhagen (Denmark). Dept. of Geosciences and Natural Resource Management
  21. Max Planck Inst. for Biogeochemistry, Jena (Germany)
  22. San Diego State Univ., CA (United States). Dept. of Biology; Univ. of California San Diego, La Jolla, CA (United States). Scripps Inst. of Oceanography
  23. Queen's Univ., Kingston, ON (Canada). Dept. of Biology
  24. McMaster Univ., Hamilton, ON (Canada). School of Geography and Earth Sciences; Univ. of Montreal, Montreal, QC (Canada). Dept. of Geography & Center for Northern Studies
  25. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  26. Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division
  27. Univ. of Alaska, Fairbanks, AK (United States). International Arctic Research Center
  28. Univ. of Hamburg (Germany). Inst. of Soil Science
  29. Univ. of Illinois, Urbana, IL (United States). Dept. of Plant Biology
  30. Korea Polar Research Inst., Incheon (South Korea)
  31. Chinese Academy of Sciences (CAS), Shenyang (China). Inst. of Applied Ecology, Chinese Academy of Sciences Key Lab. of Forest Ecology and Management
  32. Colgate Univ., Hamilton, NY (United States). Dept. of Geography
  33. National Univ. of Singapore, Singapore (Singapore). Dept. of Geography
  34. Stanford Univ., CA (United States). Dept. of Earth System Science
  35. USGS Western Region, Menlo Park, CA (United States). Geology, Minerals, Energy, and Geophysics Science Center
  36. Univ. of Copenhagen (Denmark). Dept. of Biology
  37. San Diego State Univ., CA (United States). Dept. of Biology; Univ. of Exeter (United Kingdom)
  38. Univ. of Alberta, Edmonton, AB (Canada). Dept. of Renewable Resources
  39. Univ. of Oslo (Norway). Dept. of Geosciences; Lund Univ. (Sweden). Dept. of Physical Geography and Ecosystem Science
  40. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States). Biospheric Sciences Lab.
  41. Wilfrid Laurier Univ., Waterloo, ON (Canada)
  42. Univ. of Waterloo, ON (Canada). Water Inst. and Dept. of Earth & Environmental Sciences, Ecohydrology Research Group
  43. St. Francis Xavier Univ., Antigonish, NS (Canada)
  44. GFZ German Research Centre for Geosciences, Potsdam (Germany)
  45. Univ. of Colorado, Boulder, CO (United States). Cooperative Inst. for Research in Environmental Science, National Snow and Ice Data Center
  46. Univ. of Vienna (Austria). Dept. of Botany and Biodiversity Research
  47. Marine Biological Lab., Woods Hole, MA (United States). The Ecosystems Center
  48. Univ. of Montreal, Montreal, QC (Canada). Dept. of Geography & Center for Northern Studies
  49. Univ. of Alabama, Tuscaloosa, AL (United States). Dept. of Biological Sciences
  50. Univ. of Eastern Finland, Kuopio (Finland). Dept. of Environmental and Biological Science
  51. Univ. of Alaska, Anchorage, AK (United States). Dept. of Biological Sciences; Univ. of Oulu, Rovaniemi (Finland). Ecology and Genetics Research Unit
  52. Univ. of Maryland, College Park, MD (United States). Dept. of Geographical Sciences
  53. Purdue Univ., West Lafayette, IN (United States). Dept. of Earth, Atmospheric and Planetary Sciences
  54. San Diego State Univ., CA (United States). Dept. of Biology; Univ. of Sheffield (United Kingdom)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23). Terrestrial Ecosystem Science
OSTI Identifier:
1573251
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature Climate Change
Additional Journal Information:
Journal Volume: 9; Journal Issue: 11; Journal ID: ISSN 1758-678X
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Arctic; winter respiration

Citation Formats

Natali, Susan M., Watts, Jennifer D., Rogers, Brendan M., Potter, Stefano, Ludwig, Sarah M., Selbmann, Anne-Katrin, Sullivan, Patrick F., Abbott, Benjamin W., Arndt, Kyle A., Birch, Leah, Björkman, Mats P., Bloom, A. Anthony, Celis, Gerardo, Christensen, Torben R., Christiansen, Casper T., Commane, Roisin, Cooper, Elisabeth J., Crill, Patrick, Czimczik, Claudia, Davydov, Sergey, Du, Jinyang, Egan, Jocelyn E., Elberling, Bo, Euskirchen, Eugenie S., Friborg, Thomas, Genet, Hélène, Göckede, Mathias, Goodrich, Jordan P., Grogan, Paul, Helbig, Manuel, Jafarov, Elchin E., Jastrow, Julie D., Kalhori, Aram A. M., Kim, Yongwon, Kimball, John S., Kutzbach, Lars, Lara, Mark J., Larsen, Klaus S., Lee, Bang-Yong, Liu, Zhihua, Loranty, Michael M., Lund, Magnus, Lupascu, Massimo, Madani, Nima, Malhotra, Avni, Matamala, Roser, McFarland, Jack, McGuire, A. David, Michelsen, Anders, Minions, Christina, Oechel, Walter C., Olefeldt, David, Parmentier, Frans-Jan W., Pirk, Norbert, Poulter, Ben, Quinton, William, Rezanezhad, Fereidoun, Risk, David, Sachs, Torsten, Schaefer, Kevin, Schmidt, Niels M., Schuur, Edward A. G., Semenchuk, Philipp R., Shaver, Gaius, Sonnentag, Oliver, Starr, Gregory, Treat, Claire C., Waldrop, Mark P., Wang, Yihui, Welker, Jeffrey, Wille, Christian, Xu, Xiaofeng, Zhang, Zhen, Zhuang, Qianlai, and Zona, Donatella. Large loss of CO2 in winter observed across the northern permafrost region. United States: N. p., 2019. Web. doi:10.1038/s41558-019-0592-8.
Natali, Susan M., Watts, Jennifer D., Rogers, Brendan M., Potter, Stefano, Ludwig, Sarah M., Selbmann, Anne-Katrin, Sullivan, Patrick F., Abbott, Benjamin W., Arndt, Kyle A., Birch, Leah, Björkman, Mats P., Bloom, A. Anthony, Celis, Gerardo, Christensen, Torben R., Christiansen, Casper T., Commane, Roisin, Cooper, Elisabeth J., Crill, Patrick, Czimczik, Claudia, Davydov, Sergey, Du, Jinyang, Egan, Jocelyn E., Elberling, Bo, Euskirchen, Eugenie S., Friborg, Thomas, Genet, Hélène, Göckede, Mathias, Goodrich, Jordan P., Grogan, Paul, Helbig, Manuel, Jafarov, Elchin E., Jastrow, Julie D., Kalhori, Aram A. M., Kim, Yongwon, Kimball, John S., Kutzbach, Lars, Lara, Mark J., Larsen, Klaus S., Lee, Bang-Yong, Liu, Zhihua, Loranty, Michael M., Lund, Magnus, Lupascu, Massimo, Madani, Nima, Malhotra, Avni, Matamala, Roser, McFarland, Jack, McGuire, A. David, Michelsen, Anders, Minions, Christina, Oechel, Walter C., Olefeldt, David, Parmentier, Frans-Jan W., Pirk, Norbert, Poulter, Ben, Quinton, William, Rezanezhad, Fereidoun, Risk, David, Sachs, Torsten, Schaefer, Kevin, Schmidt, Niels M., Schuur, Edward A. G., Semenchuk, Philipp R., Shaver, Gaius, Sonnentag, Oliver, Starr, Gregory, Treat, Claire C., Waldrop, Mark P., Wang, Yihui, Welker, Jeffrey, Wille, Christian, Xu, Xiaofeng, Zhang, Zhen, Zhuang, Qianlai, & Zona, Donatella. Large loss of CO2 in winter observed across the northern permafrost region. United States. doi:10.1038/s41558-019-0592-8.
Natali, Susan M., Watts, Jennifer D., Rogers, Brendan M., Potter, Stefano, Ludwig, Sarah M., Selbmann, Anne-Katrin, Sullivan, Patrick F., Abbott, Benjamin W., Arndt, Kyle A., Birch, Leah, Björkman, Mats P., Bloom, A. Anthony, Celis, Gerardo, Christensen, Torben R., Christiansen, Casper T., Commane, Roisin, Cooper, Elisabeth J., Crill, Patrick, Czimczik, Claudia, Davydov, Sergey, Du, Jinyang, Egan, Jocelyn E., Elberling, Bo, Euskirchen, Eugenie S., Friborg, Thomas, Genet, Hélène, Göckede, Mathias, Goodrich, Jordan P., Grogan, Paul, Helbig, Manuel, Jafarov, Elchin E., Jastrow, Julie D., Kalhori, Aram A. M., Kim, Yongwon, Kimball, John S., Kutzbach, Lars, Lara, Mark J., Larsen, Klaus S., Lee, Bang-Yong, Liu, Zhihua, Loranty, Michael M., Lund, Magnus, Lupascu, Massimo, Madani, Nima, Malhotra, Avni, Matamala, Roser, McFarland, Jack, McGuire, A. David, Michelsen, Anders, Minions, Christina, Oechel, Walter C., Olefeldt, David, Parmentier, Frans-Jan W., Pirk, Norbert, Poulter, Ben, Quinton, William, Rezanezhad, Fereidoun, Risk, David, Sachs, Torsten, Schaefer, Kevin, Schmidt, Niels M., Schuur, Edward A. G., Semenchuk, Philipp R., Shaver, Gaius, Sonnentag, Oliver, Starr, Gregory, Treat, Claire C., Waldrop, Mark P., Wang, Yihui, Welker, Jeffrey, Wille, Christian, Xu, Xiaofeng, Zhang, Zhen, Zhuang, Qianlai, and Zona, Donatella. Mon . "Large loss of CO2 in winter observed across the northern permafrost region". United States. doi:10.1038/s41558-019-0592-8.
@article{osti_1573251,
title = {Large loss of CO2 in winter observed across the northern permafrost region},
author = {Natali, Susan M. and Watts, Jennifer D. and Rogers, Brendan M. and Potter, Stefano and Ludwig, Sarah M. and Selbmann, Anne-Katrin and Sullivan, Patrick F. and Abbott, Benjamin W. and Arndt, Kyle A. and Birch, Leah and Björkman, Mats P. and Bloom, A. Anthony and Celis, Gerardo and Christensen, Torben R. and Christiansen, Casper T. and Commane, Roisin and Cooper, Elisabeth J. and Crill, Patrick and Czimczik, Claudia and Davydov, Sergey and Du, Jinyang and Egan, Jocelyn E. and Elberling, Bo and Euskirchen, Eugenie S. and Friborg, Thomas and Genet, Hélène and Göckede, Mathias and Goodrich, Jordan P. and Grogan, Paul and Helbig, Manuel and Jafarov, Elchin E. and Jastrow, Julie D. and Kalhori, Aram A. M. and Kim, Yongwon and Kimball, John S. and Kutzbach, Lars and Lara, Mark J. and Larsen, Klaus S. and Lee, Bang-Yong and Liu, Zhihua and Loranty, Michael M. and Lund, Magnus and Lupascu, Massimo and Madani, Nima and Malhotra, Avni and Matamala, Roser and McFarland, Jack and McGuire, A. David and Michelsen, Anders and Minions, Christina and Oechel, Walter C. and Olefeldt, David and Parmentier, Frans-Jan W. and Pirk, Norbert and Poulter, Ben and Quinton, William and Rezanezhad, Fereidoun and Risk, David and Sachs, Torsten and Schaefer, Kevin and Schmidt, Niels M. and Schuur, Edward A. G. and Semenchuk, Philipp R. and Shaver, Gaius and Sonnentag, Oliver and Starr, Gregory and Treat, Claire C. and Waldrop, Mark P. and Wang, Yihui and Welker, Jeffrey and Wille, Christian and Xu, Xiaofeng and Zhang, Zhen and Zhuang, Qianlai and Zona, Donatella},
abstractNote = {Recent warming in the Arctic, which has been amplified during the winter, greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO2)4. However, the amount of CO2 released in winter is not known and has not been well represented by ecosystem models or empirically based estimates. In this paper, we synthesize regional in situ observations of CO2 flux from Arctic and boreal soils to assess current and future winter carbon losses from the northern permafrost domain. We estimate a contemporary loss of 1,662 TgC per year from the permafrost region during the winter season (October–April). This loss is greater than the average growing season carbon uptake for this region estimated from process models (-1,032 TgC per year). Extending model predictions to warmer conditions up to 2100 indicates that winter CO2 emissions will increase 17% under a moderate mitigation scenario—Representative Concentration Pathway 4.5—and 41% under business-as-usual emissions scenario—Representative Concentration Pathway 8.5. Finally, our results provide a baseline for winter CO2 emissions from northern terrestrial regions and indicate that enhanced soil CO2 loss due to winter warming may offset growing season carbon uptake under future climatic conditions.},
doi = {10.1038/s41558-019-0592-8},
journal = {Nature Climate Change},
number = 11,
volume = 9,
place = {United States},
year = {2019},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on October 21, 2020
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Winter forest soil respiration controlled by climate and microbial community composition
journal, February 2006

  • Monson, Russell K.; Lipson, David L.; Burns, Sean P.
  • Nature, Vol. 439, Issue 7077
  • DOI: 10.1038/nature04555

Photosynthesis of Arctic Evergreens Under Snow: Implications for Tundra Ecosystem Carbon Balance
journal, June 2003

  • Starr, Gregory; Oberbauer, Steven F.
  • Ecology, Vol. 84, Issue 6
  • DOI: 10.1890/02-3154

Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
journal, January 2014


Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra: WARMING OF ALASKAN TUNDRA
journal, February 2011


Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra
journal, May 2017

  • Commane, Róisín; Lindaas, Jakob; Benmergui, Joshua
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 21
  • DOI: 10.1073/pnas.1618567114

Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

Recently amplified arctic warming has contributed to a continual global warming trend
journal, November 2017


Climate model genealogy: Generation CMIP5 and how we got there: CLIMATE MODEL GENEALOGY
journal, March 2013

  • Knutti, Reto; Masson, David; Gettelman, Andrew
  • Geophysical Research Letters, Vol. 40, Issue 6
  • DOI: 10.1002/grl.50256

Diagnosing Present and Future Permafrost from Climate Models
journal, August 2013


Cold season emissions dominate the Arctic tundra methane budget
journal, December 2015

  • Zona, Donatella; Gioli, Beniamino; Commane, Róisín
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 1
  • DOI: 10.1073/pnas.1516017113

Snow-sensing fleet to unlock water's icy secrets
journal, April 2016


Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change
journal, March 2018

  • McGuire, A. David; Lawrence, David M.; Koven, Charles
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 15
  • DOI: 10.1073/pnas.1719903115

EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets
journal, March 2012

  • Brodzik, Mary J.; Billingsley, Brendan; Haran, Terry
  • ISPRS International Journal of Geo-Information, Vol. 1, Issue 1
  • DOI: 10.3390/ijgi1010032

A working guide to boosted regression trees
journal, July 2008


Evidence of Nonlinearity in the Response of Net Ecosystem CO 2 Exchange to Increasing Levels of Winter Snow Depth in the High Arctic of Northwest Greenland
journal, February 2011

  • Rogers, Matthew C.; Sullivan, Patrick F.; Welker, Jeffrey M.
  • Arctic, Antarctic, and Alpine Research, Vol. 43, Issue 1
  • DOI: 10.1657/1938-4246-43.1.95

Detecting regional patterns of changing CO 2 flux in Alaska
journal, June 2016

  • Parazoo, Nicholas C.; Commane, Roisin; Wofsy, Steven C.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 28
  • DOI: 10.1073/pnas.1601085113

Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems
journal, January 2016


Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms
journal, January 2016

  • Tramontana, Gianluca; Jung, Martin; Schwalm, Christopher R.
  • Biogeosciences, Vol. 13, Issue 14
  • DOI: 10.5194/bg-13-4291-2016

Tundra ecosystems observed to be CO 2 sources due to differential amplification of the carbon cycle
journal, August 2013

  • Belshe, E. F.; Schuur, E. A. G.; Bolker, B. M.
  • Ecology Letters, Vol. 16, Issue 10
  • DOI: 10.1111/ele.12164

Permafrost carbon-climate feedbacks accelerate global warming
journal, August 2011

  • Koven, C. D.; Ringeval, B.; Friedlingstein, P.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 36
  • DOI: 10.1073/pnas.1103910108

A parameterization of respiration in frozen soils based on substrate availability
journal, January 2016


An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions
journal, January 2012


Controls on winter ecosystem respiration in temperate and boreal ecosystems
journal, January 2011


Nongrowing season methane emissions-a significant component of annual emissions across northern ecosystems
journal, April 2018

  • Treat, Claire C.; Bloom, A. Anthony; Marushchak, Maija E.
  • Global Change Biology, Vol. 24, Issue 8
  • DOI: 10.1111/gcb.14137

High Arctic Dry Heath CO2 Exchange During the Early Cold Season
journal, July 2012

  • Christiansen, Casper Tai; Schmidt, Niels Martin; Michelsen, Anders
  • Ecosystems, Vol. 15, Issue 7
  • DOI: 10.1007/s10021-012-9569-4

Soil organic carbon and CO 2 respiration at subzero temperature in soils of Arctic Alaska
journal, January 2003


Permafrost thaw and soil moisture driving CO 2 and CH 4 release from upland tundra
journal, March 2015

  • Natali, Susan M.; Schuur, Edward A. G.; Mauritz, Marguerite
  • Journal of Geophysical Research: Biogeosciences, Vol. 120, Issue 3
  • DOI: 10.1002/2014JG002872

Arctic climate change in 21st century CMIP5 simulations with EC-Earth
journal, September 2012

  • Koenigk, Torben; Brodeau, Laurent; Graversen, Rune Grand
  • Climate Dynamics, Vol. 40, Issue 11-12
  • DOI: 10.1007/s00382-012-1505-y

Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies of arctic C cycling
journal, February 2003


Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees
journal, September 2006

  • Leathwick, Jr; Elith, J.; Francis, Mp
  • Marine Ecology Progress Series, Vol. 321
  • DOI: 10.3354/meps321267

Recent Arctic amplification and extreme mid-latitude weather
journal, August 2014

  • Cohen, Judah; Screen, James A.; Furtado, Jason C.
  • Nature Geoscience, Vol. 7, Issue 9
  • DOI: 10.1038/ngeo2234

Observing terrestrial ecosystems and the carbon cycle from space
journal, February 2015

  • Schimel, David; Pavlick, Ryan; Fisher, Joshua B.
  • Global Change Biology, Vol. 21, Issue 5
  • DOI: 10.1111/gcb.12822

21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes
journal, August 2018

  • Walter Anthony, Katey; Schneider von Deimling, Thomas; Nitze, Ingmar
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-05738-9

Long-Term Release of Carbon Dioxide from Arctic Tundra Ecosystems in Alaska
journal, November 2016


Temperature sensitivity of soil organic matter decomposition in southern and northern areas of the boreal forest zone
journal, July 2008


Carbon cycle uncertainty in the Alaskan Arctic
journal, January 2014


Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions
journal, January 2018

  • Loranty, Michael M.; Abbott, Benjamin W.; Blok, Daan
  • Biogeosciences, Vol. 15, Issue 17
  • DOI: 10.5194/bg-15-5287-2018