skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Economic analysis of a high-pressure urban pipeline concept (HyLine) for delivering hydrogen to retail fueling stations

Abstract

Reducing the cost of delivering hydrogen to fueling stations and dispensing it into fuel cell electric vehicles (FCEVs) is one critical element of efforts to increase the cost-competitiveness of FCEVs. Today, hydrogen is primarily delivered to stations by trucks. Pipeline delivery is much rarer: one urban U.S. station has been supplied with 800-psi hydrogen from an industrial hydrogen pipeline since 2011, and a German station on the edge of an industrial park has been supplied with 13,000-psi hydrogen from a pipeline since 2006. This article compares the economics of existing U.S. hydrogen delivery methods with the economics of a high-pressure, scalable, intra-city pipeline system referred to here as the 'HyLine' system. In the HyLine system, hydrogen would be produced at urban industrial or commercial sites, compressed to 15,000 psi, stored at centralized facilities, delivered via high-pressure pipeline to retail stations, and dispensed directly into FCEVs. Our analysis of retail fueling station economics in Los Angeles suggests that, as FCEV demand for hydrogen in an area becomes sufficiently dense, pipeline hydrogen delivery gains an economic advantage over truck delivery. The HyLine approach would also enable cheaper dispensed hydrogen compared with lower-pressure pipeline delivery owing to economies of scale associated with integratedmore » compression and storage. In the largest-scale fueling scenario analyzed (a network of 24 stations with capacities of 1500 kg/d each, and hydrogen produced via steam methane reforming), HyLine could potentially achieve a profited hydrogen cost of 5.3/kg, which is approximately equivalent to a gasoline cost of 2.7/gal (assuming FCEVs offer twice the fuel economy of internal combustion engine vehicles and vehicle cost is competitive). It is important to note that significant effort would be required to develop technical knowledge, codes, and standards that would enable a HyLine system to be viable. However, our preliminary analysis suggests that the HyLine approach merits further consideration based on its potential economic advantages. These advantages could also include the value of minimizing retail space used by hydrogen compression and storage sited at fueling stations, which is not reflected in our analysis.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  2. Independent Contractor (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Fuel Cell Technologies Office (EE-3F)
OSTI Identifier:
1573102
Alternate Identifier(s):
OSTI ID: 1574200
Report Number(s):
NREL/JA-5400-75159
Journal ID: ISSN 1361-9209
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Published Article
Journal Name:
Transportation Research. Part D, Transport and Environment
Additional Journal Information:
Journal Volume: 77; Journal Issue: C; Journal ID: ISSN 1361-9209
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
29 ENERGY PLANNING, POLICY, AND ECONOMY; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; hydrogen; pipeline; infrastructure; delivery; stations; refueling; HyLine; safety

Citation Formats

Penev, Michael, Zuboy, Jarett, and Hunter, Chad. Economic analysis of a high-pressure urban pipeline concept (HyLine) for delivering hydrogen to retail fueling stations. United States: N. p., 2019. Web. doi:10.1016/j.trd.2019.10.005.
Penev, Michael, Zuboy, Jarett, & Hunter, Chad. Economic analysis of a high-pressure urban pipeline concept (HyLine) for delivering hydrogen to retail fueling stations. United States. doi:10.1016/j.trd.2019.10.005.
Penev, Michael, Zuboy, Jarett, and Hunter, Chad. Mon . "Economic analysis of a high-pressure urban pipeline concept (HyLine) for delivering hydrogen to retail fueling stations". United States. doi:10.1016/j.trd.2019.10.005.
@article{osti_1573102,
title = {Economic analysis of a high-pressure urban pipeline concept (HyLine) for delivering hydrogen to retail fueling stations},
author = {Penev, Michael and Zuboy, Jarett and Hunter, Chad},
abstractNote = {Reducing the cost of delivering hydrogen to fueling stations and dispensing it into fuel cell electric vehicles (FCEVs) is one critical element of efforts to increase the cost-competitiveness of FCEVs. Today, hydrogen is primarily delivered to stations by trucks. Pipeline delivery is much rarer: one urban U.S. station has been supplied with 800-psi hydrogen from an industrial hydrogen pipeline since 2011, and a German station on the edge of an industrial park has been supplied with 13,000-psi hydrogen from a pipeline since 2006. This article compares the economics of existing U.S. hydrogen delivery methods with the economics of a high-pressure, scalable, intra-city pipeline system referred to here as the 'HyLine' system. In the HyLine system, hydrogen would be produced at urban industrial or commercial sites, compressed to 15,000 psi, stored at centralized facilities, delivered via high-pressure pipeline to retail stations, and dispensed directly into FCEVs. Our analysis of retail fueling station economics in Los Angeles suggests that, as FCEV demand for hydrogen in an area becomes sufficiently dense, pipeline hydrogen delivery gains an economic advantage over truck delivery. The HyLine approach would also enable cheaper dispensed hydrogen compared with lower-pressure pipeline delivery owing to economies of scale associated with integrated compression and storage. In the largest-scale fueling scenario analyzed (a network of 24 stations with capacities of 1500 kg/d each, and hydrogen produced via steam methane reforming), HyLine could potentially achieve a profited hydrogen cost of 5.3/kg, which is approximately equivalent to a gasoline cost of 2.7/gal (assuming FCEVs offer twice the fuel economy of internal combustion engine vehicles and vehicle cost is competitive). It is important to note that significant effort would be required to develop technical knowledge, codes, and standards that would enable a HyLine system to be viable. However, our preliminary analysis suggests that the HyLine approach merits further consideration based on its potential economic advantages. These advantages could also include the value of minimizing retail space used by hydrogen compression and storage sited at fueling stations, which is not reflected in our analysis.},
doi = {10.1016/j.trd.2019.10.005},
journal = {Transportation Research. Part D, Transport and Environment},
number = C,
volume = 77,
place = {United States},
year = {2019},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1016/j.trd.2019.10.005

Save / Share: