skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on November 4, 2020

Title: A coarse-grained deep neural network model for liquid water

Authors:
ORCiD logo [1];  [1];  [1]; ORCiD logo [1];  [2];  [3]
  1. Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA
  2. Department of Mechanical Engineering, University of Louisville, Louisville, Kentucky 40202, USA
  3. Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA, Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1573079
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Name: Applied Physics Letters Journal Volume: 115 Journal Issue: 19; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics
Country of Publication:
United States
Language:
English

Citation Formats

Patra, Tarak K., Loeffler, Troy D., Chan, Henry, Cherukara, Mathew J., Narayanan, Badri, and Sankaranarayanan, Subramanian K. R. S. A coarse-grained deep neural network model for liquid water. United States: N. p., 2019. Web. doi:10.1063/1.5116591.
Patra, Tarak K., Loeffler, Troy D., Chan, Henry, Cherukara, Mathew J., Narayanan, Badri, & Sankaranarayanan, Subramanian K. R. S. A coarse-grained deep neural network model for liquid water. United States. doi:10.1063/1.5116591.
Patra, Tarak K., Loeffler, Troy D., Chan, Henry, Cherukara, Mathew J., Narayanan, Badri, and Sankaranarayanan, Subramanian K. R. S. Mon . "A coarse-grained deep neural network model for liquid water". United States. doi:10.1063/1.5116591.
@article{osti_1573079,
title = {A coarse-grained deep neural network model for liquid water},
author = {Patra, Tarak K. and Loeffler, Troy D. and Chan, Henry and Cherukara, Mathew J. and Narayanan, Badri and Sankaranarayanan, Subramanian K. R. S.},
abstractNote = {},
doi = {10.1063/1.5116591},
journal = {Applied Physics Letters},
number = 19,
volume = 115,
place = {United States},
year = {2019},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on November 4, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements
journal, January 2000

  • Holz, Manfred; Heil, Stefan R.; Sacco, Antonio
  • Physical Chemistry Chemical Physics, Vol. 2, Issue 20
  • DOI: 10.1039/b005319h

Machine learning coarse grained models for water
journal, January 2019


Recent advances and applications of machine learning in solid-state materials science
journal, August 2019

  • Schmidt, Jonathan; Marques, Mário R. G.; Botti, Silvana
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0221-0

Machine Learning Classical Interatomic Potentials for Molecular Dynamics from First-Principles Training Data
journal, January 2019

  • Chan, Henry; Narayanan, Badri; Cherukara, Mathew J.
  • The Journal of Physical Chemistry C, Vol. 123, Issue 12
  • DOI: 10.1021/acs.jpcc.8b09917

Screening billions of candidates for solid lithium-ion conductors: A transfer learning approach for small data
journal, June 2019

  • Cubuk, Ekin D.; Sendek, Austin D.; Reed, Evan J.
  • The Journal of Chemical Physics, Vol. 150, Issue 21
  • DOI: 10.1063/1.5093220

DeePCG: Constructing coarse-grained models via deep neural networks
journal, July 2018

  • Zhang, Linfeng; Han, Jiequn; Wang, Han
  • The Journal of Chemical Physics, Vol. 149, Issue 3
  • DOI: 10.1063/1.5027645

The structure of water around the compressibility minimum
journal, December 2014

  • Skinner, L. B.; Benmore, C. J.; Neuefeind, J. C.
  • The Journal of Chemical Physics, Vol. 141, Issue 21
  • DOI: 10.1063/1.4902412

A method for the solution of certain non-linear problems in least squares
journal, January 1944

  • Levenberg, Kenneth
  • Quarterly of Applied Mathematics, Vol. 2, Issue 2
  • DOI: 10.1090/qam/10666

An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2
journal, March 2016


Perspective: Machine learning potentials for atomistic simulations
journal, November 2016

  • Behler, Jörg
  • The Journal of Chemical Physics, Vol. 145, Issue 17
  • DOI: 10.1063/1.4966192

A molecular level explanation of the density maximum of liquid water from computer simulations with a polarizable potential model
journal, February 2000


Physically informed artificial neural networks for atomistic modeling of materials
journal, May 2019


A survey of transfer learning
journal, May 2016


Construction of high-dimensional neural network potentials using environment-dependent atom pairs
journal, May 2012

  • Jose, K. V. Jovan; Artrith, Nongnuch; Behler, Jörg
  • The Journal of Chemical Physics, Vol. 136, Issue 19
  • DOI: 10.1063/1.4712397

A Density-Functional Theory-Based Neural Network Potential for Water Clusters Including van der Waals Corrections
journal, April 2013

  • Morawietz, Tobias; Behler, Jörg
  • The Journal of Physical Chemistry A, Vol. 117, Issue 32
  • DOI: 10.1021/jp401225b

Atom-centered symmetry functions for constructing high-dimensional neural network potentials
journal, February 2011

  • Behler, Jörg
  • The Journal of Chemical Physics, Vol. 134, Issue 7
  • DOI: 10.1063/1.3553717

Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
journal, April 2007