DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Designing Optimal Perovskite Structure for High Ionic Conduction

Abstract

Solid-oxide fuel/electrolyzer cells are limited by a dearth of electrolyte materials with low ohmic loss and an incomplete understanding of the structure-property relationships that would enable the rational design of better materials. In this work, using epitaxial thin-film growth, synchrotron radiation, impedance spectroscopy, and density-functional theory, the impact of structural parameters (i.e., unit-cell volume and octahedral rotations) on ionic conductivity is delineated in La0.9Sr0.1Ga0.95Mg0.05O3-σ. As compared to the zero-strain state, compressive strain reduces the unit-cell volume while maintaining large octahedral rotations, resulting in a strong reduction of ionic conductivity, while tensile strain increases the unit-cell volume while quenching octahedral rotations, resulting in a negligible effect on the ionic conductivity. Calculations reveal that larger unit-cell volumes and octahedral rotations decrease migration barriers and create low-energy migration pathways, respectively. The desired combination of large unit-cell volume and octahedral rotations is normally contraindicated, but through the creation of superlattice structures both expanded unit-cell volume and large octahedral rotations are experimentally realized, which result in an enhancement of the ionic conductivity. All told, the potential to tune ionic conductivity with structure alone by a factor of ≈ 2.5 at around 600 degrees C is observed, which sheds new light on the rational design ofmore » ion-conducting perovskite electrolytes.« less

Authors:
ORCiD logo [1];  [2];  [1];  [3];  [4];  [5];  [1];  [6];  [1];  [1];  [1];  [6];  [4];  [2];  [7];  [6];  [8];  [2];  [9]
  1. Univ. of California, Berkeley, CA (United States)
  2. Univ. of Illinois at Urbana-Champaign, IL (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Science and Technology of China, Hefei, Anhui (China)
  4. Pennsylvania State Univ., State College, PA (United States)
  5. Argonne National Lab. (ANL), Argonne, IL (United States)
  6. Kyushu Univ., Fukuoka (Japan)
  7. Imperial College, London (United Kingdom)
  8. Univ. of Illinois at Urbana-Champaign, IL (United States); Kyushu Univ., Fukuoka (Japan)
  9. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division; National Science Foundation (NSF); USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
OSTI Identifier:
1633253
Alternate Identifier(s):
OSTI ID: 1573069; OSTI ID: 1615622
Grant/Contract Number:  
AC02-06CH11357; AC02-05CH11231; OISE-1545907; W911NF-14-1-0104; SC0012375; DMR-1608938; DMR-1708615; AC02‐06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 32; Journal Issue: 1; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; crystal symmetry; energy conversion; ionic conduction; octahedral rotation; perovskite oxides; strain

Citation Formats

Gao, Ran, Jain, Abhinav C. P., Pandya, Shishir, Dong, Yongqi, Yuan, Yakun, Zhou, Hua, Dedon, Liv R., Thoréton, Vincent, Saremi, Sahar, Xu, Ruijuan, Luo, Aileen, Chen, Ting, Gopalan, Venkatraman, Ertekin, Elif, Kilner, John, Ishihara, Tatsumi, Perry, Nicola H., Trinkle, Dallas R., and Martin, Lane W. Designing Optimal Perovskite Structure for High Ionic Conduction. United States: N. p., 2019. Web. doi:10.1002/adma.201905178.
Gao, Ran, Jain, Abhinav C. P., Pandya, Shishir, Dong, Yongqi, Yuan, Yakun, Zhou, Hua, Dedon, Liv R., Thoréton, Vincent, Saremi, Sahar, Xu, Ruijuan, Luo, Aileen, Chen, Ting, Gopalan, Venkatraman, Ertekin, Elif, Kilner, John, Ishihara, Tatsumi, Perry, Nicola H., Trinkle, Dallas R., & Martin, Lane W. Designing Optimal Perovskite Structure for High Ionic Conduction. United States. https://doi.org/10.1002/adma.201905178
Gao, Ran, Jain, Abhinav C. P., Pandya, Shishir, Dong, Yongqi, Yuan, Yakun, Zhou, Hua, Dedon, Liv R., Thoréton, Vincent, Saremi, Sahar, Xu, Ruijuan, Luo, Aileen, Chen, Ting, Gopalan, Venkatraman, Ertekin, Elif, Kilner, John, Ishihara, Tatsumi, Perry, Nicola H., Trinkle, Dallas R., and Martin, Lane W. Mon . "Designing Optimal Perovskite Structure for High Ionic Conduction". United States. https://doi.org/10.1002/adma.201905178. https://www.osti.gov/servlets/purl/1633253.
@article{osti_1633253,
title = {Designing Optimal Perovskite Structure for High Ionic Conduction},
author = {Gao, Ran and Jain, Abhinav C. P. and Pandya, Shishir and Dong, Yongqi and Yuan, Yakun and Zhou, Hua and Dedon, Liv R. and Thoréton, Vincent and Saremi, Sahar and Xu, Ruijuan and Luo, Aileen and Chen, Ting and Gopalan, Venkatraman and Ertekin, Elif and Kilner, John and Ishihara, Tatsumi and Perry, Nicola H. and Trinkle, Dallas R. and Martin, Lane W.},
abstractNote = {Solid-oxide fuel/electrolyzer cells are limited by a dearth of electrolyte materials with low ohmic loss and an incomplete understanding of the structure-property relationships that would enable the rational design of better materials. In this work, using epitaxial thin-film growth, synchrotron radiation, impedance spectroscopy, and density-functional theory, the impact of structural parameters (i.e., unit-cell volume and octahedral rotations) on ionic conductivity is delineated in La0.9Sr0.1Ga0.95Mg0.05O3-σ. As compared to the zero-strain state, compressive strain reduces the unit-cell volume while maintaining large octahedral rotations, resulting in a strong reduction of ionic conductivity, while tensile strain increases the unit-cell volume while quenching octahedral rotations, resulting in a negligible effect on the ionic conductivity. Calculations reveal that larger unit-cell volumes and octahedral rotations decrease migration barriers and create low-energy migration pathways, respectively. The desired combination of large unit-cell volume and octahedral rotations is normally contraindicated, but through the creation of superlattice structures both expanded unit-cell volume and large octahedral rotations are experimentally realized, which result in an enhancement of the ionic conductivity. All told, the potential to tune ionic conductivity with structure alone by a factor of ≈ 2.5 at around 600 degrees C is observed, which sheds new light on the rational design of ion-conducting perovskite electrolytes.},
doi = {10.1002/adma.201905178},
journal = {Advanced Materials},
number = 1,
volume = 32,
place = {United States},
year = {Mon Nov 04 00:00:00 EST 2019},
month = {Mon Nov 04 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 29 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Materials for fuel-cell technologies
journal, November 2001

  • Steele, Brian C. H.; Heinzel, Angelika
  • Nature, Vol. 414, Issue 6861, p. 345-352
  • DOI: 10.1038/35104620

A Direct Manufacturing Cost Model for Solid-Oxide Fuel Cell Stacks
journal, November 2017


Solid oxide fuel cells: fundamental aspects and prospects
journal, May 2000


Lowering the Temperature of Solid Oxide Fuel Cells
journal, November 2011


A perspective on low-temperature solid oxide fuel cells
journal, January 2016

  • Gao, Zhan; Mogni, Liliana V.; Miller, Elizabeth C.
  • Energy & Environmental Science, Vol. 9, Issue 5
  • DOI: 10.1039/C5EE03858H

Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor
journal, May 1994

  • Ishihara, Tatsumi; Matsuda, Hideaki; Takita, Yusaku
  • Journal of the American Chemical Society, Vol. 116, Issue 9
  • DOI: 10.1021/ja00088a016

Electronic and Ionic Conductivity of La 0.95 Sr 0.05 Ga 0.95 Mg 0.05 O 3-δ (LSGM) Single Crystals
journal, January 2016

  • Rupp, Ghislain M.; Glowacki, Michal; Fleig, Jürgen
  • Journal of The Electrochemical Society, Vol. 163, Issue 10
  • DOI: 10.1149/2.0591610jes

A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3
journal, November 2013

  • Li, Ming; Pietrowski, Martha J.; De Souza, Roger A.
  • Nature Materials, Vol. 13, Issue 1
  • DOI: 10.1038/nmat3782

Dramatic Influence of A-Site Nonstoichiometry on the Electrical Conductivity and Conduction Mechanisms in the Perovskite Oxide Na 0.5 Bi 0.5 TiO 3
journal, January 2015

  • Li, Ming; Zhang, Huairuo; Cook, Stuart N.
  • Chemistry of Materials, Vol. 27, Issue 2
  • DOI: 10.1021/cm504475k

Ionic conductivity of yttrium-doped zirconia and the “composite effect”
journal, August 1995


Superior Perovskite Oxide-Ion Conductor; Strontium- and Magnesium-Doped LaGaO3: I, Phase Relationships and Electrical Properties
journal, October 1998


Ionic conductivity of zirconia based ceramics from single crystals to nanostructured polycrystals
journal, January 2001


Ionic diffusion as a matter of lattice-strain for electroceramic thin films
journal, January 2012


Ionic conductivity and activation energy for oxygen ion transport in superlattices—the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3
journal, January 2008

  • Korte, C.; Peters, A.; Janek, J.
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 31
  • DOI: 10.1039/b801675e

Improved ionic conductivity in strained yttria-stabilized zirconia thin films
journal, April 2013

  • Jiang, Jun; Hu, Xiaocao; Shen, Weida
  • Applied Physics Letters, Vol. 102, Issue 14
  • DOI: 10.1063/1.4801649

Strain induced ionic conductivity enhancement in epitaxial Ce 0.9 Gd 0.1 O 2−δ thin films
journal, January 2012

  • Mohan Kant, K.; Esposito, V.; Pryds, N.
  • Applied Physics Letters, Vol. 100, Issue 3
  • DOI: 10.1063/1.3676659

On the influence of strain on ion transport: microstructure and ionic conductivity of nanoscale YSZ|Sc2O3 multilayers
journal, January 2010

  • Schichtel, Nicole; Korte, Carsten; Hesse, Dietrich
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 43
  • DOI: 10.1039/c0cp01018a

Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures
journal, August 2008

  • Garcia-Barriocanal, J.; Rivera-Calzada, A.; Varela, M.
  • Science, Vol. 321, Issue 5889
  • DOI: 10.1126/science.1156393

Ionic transport in ABO3 perovskite oxides: a computer modelling tour
journal, January 2000

  • Saiful Islam, M.
  • Journal of Materials Chemistry, Vol. 10, Issue 4
  • DOI: 10.1039/a908425h

Strain effects on oxygen migration in perovskites
journal, January 2015

  • Mayeshiba, Tam; Morgan, Dane
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 4
  • DOI: 10.1039/C4CP05554C

Oxygen ion diffusivity in strained yttria stabilized zirconia: where is the fastest strain?
journal, January 2010

  • Kushima, Akihiro; Yildiz, Bilge
  • Journal of Materials Chemistry, Vol. 20, Issue 23
  • DOI: 10.1039/c000259c

Coupling and competition between ferroelectricity, magnetism, strain, and oxygen vacancies in A MnO 3 perovskites
journal, August 2016

  • Marthinsen, Astrid; Faber, Carina; Aschauer, Ulrich
  • MRS Communications, Vol. 6, Issue 3
  • DOI: 10.1557/mrc.2016.30

Ionic conduction in the SrTiO3|YSZ|SrTiO3 heterostructure
journal, January 2013

  • De Souza, R. A.; Ramadan, A. H. H.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 13
  • DOI: 10.1039/c3cp44399j

Structural consideration on the ionic conductivity of perovskite-type oxides
journal, July 1999


Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides
journal, October 2004


Interfacial Octahedral Rotation Mismatch Control of the Symmetry and Properties of SrRuO 3
journal, June 2016

  • Gao, Ran; Dong, Yongqi; Xu, Han
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 23
  • DOI: 10.1021/acsami.6b02864

Quantifying octahedral rotations in strained perovskite oxide films
journal, July 2010


Structural refinement of Pbnm -type perovskite films from analysis of half-order diffraction peaks
journal, January 2017

  • Brahlek, M.; Choquette, A. K.; Smith, C. R.
  • Journal of Applied Physics, Vol. 121, Issue 4
  • DOI: 10.1063/1.4974362

High-Temperature Powder Neutron Diffraction Study of the Oxide Ion Conductor La0.9Sr0.1Ga0.8Mg0.2O2.85
journal, August 1998

  • Slater, P. R.; Irvine, J. T. S.; Ishihara, T.
  • Journal of Solid State Chemistry, Vol. 139, Issue 1
  • DOI: 10.1006/jssc.1998.7821

Combined neutron and synchrotron X-ray diffraction study of Sr/Mg-doped lanthanum gallates up to high temperatures
journal, August 2006

  • Guenter, M. M.; Lerch, M.; Boysen, H.
  • Journal of Physics and Chemistry of Solids, Vol. 67, Issue 8
  • DOI: 10.1016/j.jpcs.2006.04.001

Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications
journal, January 2001

  • Jamnik, J.; Maier, J.
  • Physical Chemistry Chemical Physics, Vol. 3, Issue 9
  • DOI: 10.1039/b100180i

Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductors: A Case Study of Ceria
journal, November 2005


Oxygen Diffusion in SrTiO 3 and Related Perovskite Oxides
journal, August 2015


Crystal structures and phase transitions of orthorhombic and rhombohedral RGaO 3 (R=La,Pr,Nd) investigated by neutron powder diffraction
journal, January 1994


The orthorhombic and rhombohedral phases of - a neutron powder diffraction study
journal, January 1999


Oxygen Ion Migration in Perovskite-Type Oxides
journal, August 1995

  • Cherry, M.; Islam, M. S.; Catlow, C. R. A.
  • Journal of Solid State Chemistry, Vol. 118, Issue 1
  • DOI: 10.1006/jssc.1995.1320

Oxygen Diffusion in LaMnO3and LaCoO3Perovskite-Type Oxides: A Molecular Dynamics Study
journal, July 1996

  • Islam, M. S.; Cherry, M.; Catlow, C. R. A.
  • Journal of Solid State Chemistry, Vol. 124, Issue 2
  • DOI: 10.1006/jssc.1996.0231

The effect of mechanical twisting on oxygen ionic transport in solid-state energy conversion membranes
journal, June 2015

  • Shi, Yanuo; Bork, Alexander Hansen; Schweiger, Sebastian
  • Nature Materials, Vol. 14, Issue 7
  • DOI: 10.1038/nmat4278

Scalable Oxygen-Ion Transport Kinetics in Metal-Oxide Films: Impact of Thermally Induced Lattice Compaction in Acceptor Doped Ceria Films
journal, January 2014

  • Rupp, Jennifer L. M.; Fabbri, Emiliana; Marrocchelli, Dario
  • Advanced Functional Materials, Vol. 24, Issue 11
  • DOI: 10.1002/adfm.201302117

Tensile Lattice Strain Accelerates Oxygen Surface Exchange and Diffusion in La 1– x Sr x CoO 3−δ Thin Films
journal, April 2013

  • Kubicek, Markus; Cai, Zhuhua; Ma, Wen
  • ACS Nano, Vol. 7, Issue 4
  • DOI: 10.1021/nn305987x

Effect of strain on the oxygen diffusion in yttria and gadolinia co-doped ceria
journal, January 2013


Dopant Substitution and Ion Migration in the LaGaO 3 -Based Oxygen Ion Conductor
journal, April 1998

  • Khan, M. S.; Islam, M. S.; Bates, D. R.
  • The Journal of Physical Chemistry B, Vol. 102, Issue 17
  • DOI: 10.1021/jp972819d

Defects in Doped LaGaO 3 Anionic Conductors: Linking NMR Spectral Features, Local Environments, and Defect Thermodynamics
journal, November 2011

  • Blanc, Frédéric; Middlemiss, Derek S.; Gan, Zhehong
  • Journal of the American Chemical Society, Vol. 133, Issue 44
  • DOI: 10.1021/ja2053557

Defect interaction and local structural distortions in Mg-doped LaGaO 3 : A combined experimental and theoretical study
journal, October 2017

  • Gambino, Marianna; Di Tommaso, Stefania; Giannici, Francesco
  • The Journal of Chemical Physics, Vol. 147, Issue 14
  • DOI: 10.1063/1.4993705

Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling
journal, March 2016

  • Liao, Z.; Huijben, M.; Zhong, Z.
  • Nature Materials, Vol. 15, Issue 4
  • DOI: 10.1038/nmat4579

Substrate coherency driven octahedral rotations in perovskite oxide films
journal, September 2010


Misfit strain accommodation in epitaxial A B O 3 perovskites: Lattice rotations and lattice modulations
journal, February 2011


Control of octahedral rotations in (LaNiO 3 ) n /(SrMnO 3 ) m superlattices
journal, April 2011


Control of Octahedral Tilts and Magnetic Properties of Perovskite Oxide Heterostructures by Substrate Symmetry
journal, November 2010


Crystal chemistry of GdScO3, DyScO3, SmScO3 and NdScO3
journal, January 2007

  • Veličkov, Boža; Kahlenberg, Volker; Bertram, Rainer
  • Zeitschrift für Kristallographie, Vol. 222, Issue 9
  • DOI: 10.1524/zkri.2007.222.9.466

Growth and properties of epitaxial rare-earth scandate thin films
journal, January 2006


Three-dimensional atomic scale electron density reconstruction of octahedral tilt epitaxy in functional perovskites
journal, December 2018


Doping effect on secondary phases, microstructure and electrical conductivities of LaGaO3 based perovskites
journal, April 2009


Cross sections for non-Rutherford backscattering of 4He from five light elements
journal, March 1994

  • Cheng, Huan-sheng; Shen, Hao; Yang, Fujia
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 85, Issue 1-4
  • DOI: 10.1016/0168-583X(94)95783-5