skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization

Abstract

Lithium (Li) pulverization and associated large volume expansion during cycling is one of the most critical barriers for the safe operation of Li-metal batteries. Here, we report an approach to minimize the Li pulverization using an electrolyte based on a fluorinated orthoformate solvent. The solid–electrolyte interphase (SEI) formed in this electrolyte clearly exhibits a monolithic feature, which is in sharp contrast with the widely reported mosaic- or multilayer-type SEIs that are not homogeneous and could lead to uneven Li stripping/plating and fast Li and electrolyte depletion over cycling. The highly homogeneous and amorphous SEI not only prevents dendritic Li formation, but also minimizes Li loss and volumetric expansion. Furthermore, this new electrolyte strongly suppresses the phase transformation of the LiNi0.8Co0.1Mn0.1O2 cathode (from layered structure to rock salt) and stabilizes its structure. In conclusion, tests of high-voltage Li||NMC811 cells show long-term cycling stability and high rate capability, as well as reduced safety concerns.

Authors:
 [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. Stanford Univ., Stanford, CA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1573017
Report Number(s):
PNNL-SA-141828
Journal ID: ISSN 2058-7546
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Nature Energy
Additional Journal Information:
Journal Volume: 4; Journal Issue: 9; Journal ID: ISSN 2058-7546
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Cao, Xia, Ren, Xiaodi, Zou, Lianfeng, Engelhard, Mark H., Huang, William, Wang, Hansen, Matthews, Bethany E., Lee, Hongkyung, Niu, Chaojiang, Arey, Bruce W., Cui, Yi, Wang, Chongmin, Xiao, Jie, Liu, Jun, Xu, Wu, and Zhang, Ji-Guang. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. United States: N. p., 2019. Web. doi:10.1038/s41560-019-0464-5.
Cao, Xia, Ren, Xiaodi, Zou, Lianfeng, Engelhard, Mark H., Huang, William, Wang, Hansen, Matthews, Bethany E., Lee, Hongkyung, Niu, Chaojiang, Arey, Bruce W., Cui, Yi, Wang, Chongmin, Xiao, Jie, Liu, Jun, Xu, Wu, & Zhang, Ji-Guang. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. United States. doi:10.1038/s41560-019-0464-5.
Cao, Xia, Ren, Xiaodi, Zou, Lianfeng, Engelhard, Mark H., Huang, William, Wang, Hansen, Matthews, Bethany E., Lee, Hongkyung, Niu, Chaojiang, Arey, Bruce W., Cui, Yi, Wang, Chongmin, Xiao, Jie, Liu, Jun, Xu, Wu, and Zhang, Ji-Guang. Fri . "Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization". United States. doi:10.1038/s41560-019-0464-5. https://www.osti.gov/servlets/purl/1573017.
@article{osti_1573017,
title = {Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization},
author = {Cao, Xia and Ren, Xiaodi and Zou, Lianfeng and Engelhard, Mark H. and Huang, William and Wang, Hansen and Matthews, Bethany E. and Lee, Hongkyung and Niu, Chaojiang and Arey, Bruce W. and Cui, Yi and Wang, Chongmin and Xiao, Jie and Liu, Jun and Xu, Wu and Zhang, Ji-Guang},
abstractNote = {Lithium (Li) pulverization and associated large volume expansion during cycling is one of the most critical barriers for the safe operation of Li-metal batteries. Here, we report an approach to minimize the Li pulverization using an electrolyte based on a fluorinated orthoformate solvent. The solid–electrolyte interphase (SEI) formed in this electrolyte clearly exhibits a monolithic feature, which is in sharp contrast with the widely reported mosaic- or multilayer-type SEIs that are not homogeneous and could lead to uneven Li stripping/plating and fast Li and electrolyte depletion over cycling. The highly homogeneous and amorphous SEI not only prevents dendritic Li formation, but also minimizes Li loss and volumetric expansion. Furthermore, this new electrolyte strongly suppresses the phase transformation of the LiNi0.8Co0.1Mn0.1O2 cathode (from layered structure to rock salt) and stabilizes its structure. In conclusion, tests of high-voltage Li||NMC811 cells show long-term cycling stability and high rate capability, as well as reduced safety concerns.},
doi = {10.1038/s41560-019-0464-5},
journal = {Nature Energy},
number = 9,
volume = 4,
place = {United States},
year = {2019},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 48 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries
journal, January 2018


High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes
journal, March 2018

  • Chen, Shuru; Zheng, Jianming; Mei, Donghai
  • Advanced Materials, Vol. 30, Issue 21
  • DOI: 10.1002/adma.201706102

Dilution of Highly Concentrated LiBF 4 /Propylene Carbonate Electrolyte Solution with Fluoroalkyl Ethers for 5-V LiNi 0.5 Mn 1.5 O 4 Positive Electrodes
journal, January 2017

  • Doi, Takayuki; Shimizu, Yusuke; Hashinokuchi, Michihiro
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0611701jes

Advancing Lithium Metal Batteries
journal, May 2018


High Voltage LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 Lithium Ion Cells at Elevated Temperatures: Carbonate- versus Ionic Liquid-Based Electrolytes
journal, September 2016

  • Cao, Xia; He, Xin; Wang, Jun
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 39
  • DOI: 10.1021/acsami.6b07687

Pathways for practical high-energy long-cycling lithium metal batteries
journal, February 2019


Review—Development of Advanced Rechargeable Batteries: A Continuous Challenge in the Choice of Suitable Electrolyte Solutions
journal, January 2015

  • Erickson, Evan M.; Markevich, Elena; Salitra, Gregory
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0051514jes

Review—Superconcentrated Electrolytes for Lithium Batteries
journal, January 2015

  • Yamada, Yuki; Yamada, Atsuo
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0041514jes

Superconcentrated electrolytes for a high-voltage lithium-ion battery
journal, June 2016

  • Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12032

Effect of Using Fluorinated Ether and Sulfone as Electrolyte Solvents for Lithium Ion Batteries with Lithium-Rich Layered Cathodes and Silicon Oxide Anodes
journal, October 2017

  • Noguchi, Takehiro; Hasegawa, Takuya; Yamauchi, Hideki
  • ECS Transactions, Vol. 80, Issue 10
  • DOI: 10.1149/08010.0291ecst

Localized High-Concentration Sulfone Electrolytes for High-Efficiency Lithium-Metal Batteries
journal, August 2018


A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes
journal, January 2018

  • Li, Nian-Wu; Shi, Yang; Yin, Ya-Xia
  • Angewandte Chemie International Edition, Vol. 57, Issue 6
  • DOI: 10.1002/anie.201710806

Ester Modified Pyrrolidinium Based Ionic Liquids as Electrolyte Component Candidates in Rechargeable Lithium Batteries: Ester Modified Pyrrolidinium Based Ionic Liquids
journal, November 2015

  • Cao, Xia; Röser, Stephan; Rezaeirad, Babak
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 641, Issue 14
  • DOI: 10.1002/zaac.201500554

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Solid–Liquid Interfacial Reaction Trigged Propagation of Phase Transition from Surface into Bulk Lattice of Ni-Rich Layered Cathode
journal, September 2018


High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes
journal, August 2018


Electrolyte Additive in Support of 5 V Li Ion Chemistry
journal, January 2011

  • von Cresce, Arthur; Xu, Kang
  • Journal of The Electrochemical Society, Vol. 158, Issue 3, p. A337-A342
  • DOI: 10.1149/1.3532047

Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries
journal, July 2018


Fluorinated electrolytes for 5 V lithium-ion battery chemistry
journal, January 2013

  • Zhang, Zhengcheng; Hu, Libo; Wu, Huiming
  • Energy & Environmental Science, Vol. 6, Issue 6
  • DOI: 10.1039/c3ee24414h

Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions
journal, July 2019


Fluorinated solvents for high-voltage electrolyte in lithium-ion battery
journal, February 2017

  • Yan, Guochun; Li, Xinhai; Wang, Zhixing
  • Journal of Solid State Electrochemistry, Vol. 21, Issue 6
  • DOI: 10.1007/s10008-017-3508-4

Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries
journal, October 2017

  • Adams, Brian D.; Zheng, Jianming; Ren, Xiaodi
  • Advanced Energy Materials, Vol. 8, Issue 7
  • DOI: 10.1002/aenm.201702097

A Highly Reversible Lithium Metal Anode
journal, January 2014

  • Park, Min Sik; Ma, Sang Bok; Lee, Dong Joon
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep03815

Solvent Activity in Electrolyte Solutions Controls Electrochemical Reactions in Li-Ion and Li-Sulfur Batteries
journal, February 2015

  • Moon, Heejoon; Mandai, Toshihiko; Tatara, Ryoichi
  • The Journal of Physical Chemistry C, Vol. 119, Issue 8
  • DOI: 10.1021/jp5128578

Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries
journal, March 2014

  • Yamada, Yuki; Furukawa, Keizo; Sodeyama, Keitaro
  • Journal of the American Chemical Society, Vol. 136, Issue 13, p. 5039-5046
  • DOI: 10.1021/ja412807w

Conductivity, Viscosity, and Their Correlation of a Super-Concentrated Aqueous Electrolyte
journal, January 2017

  • Ding, Michael S.; von Cresce, Arthur; Xu, Kang
  • The Journal of Physical Chemistry C, Vol. 121, Issue 4
  • DOI: 10.1021/acs.jpcc.6b12636

Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy:  Molecular Properties from Density Functional Theory Orbital Energies
journal, May 2003

  • Zhan, Chang-Guo; Nichols, Jeffrey A.; Dixon, David A.
  • The Journal of Physical Chemistry A, Vol. 107, Issue 20
  • DOI: 10.1021/jp0225774

Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


Extremely Stable Sodium Metal Batteries Enabled by Localized High-Concentration Electrolytes
journal, January 2018


New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM
journal, November 2017


Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Tris(hexafluoro-iso-propyl)phosphate as an SEI-Forming Additive on Improving the Electrochemical Performance of the Li[Li 0.2 Mn 0.56 Ni 0.16 Co 0.08 ]O 2 Cathode Material
journal, December 2012

  • Tan, Shi; Zhang, Zhongru; Li, Yixiao
  • Journal of The Electrochemical Society, Vol. 160, Issue 2
  • DOI: 10.1149/2.066302jes

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Perspective—Fluorinating Interphases
journal, December 2018

  • Wang, Chunsheng; Meng, Ying Shirley; Xu, Kang
  • Journal of The Electrochemical Society, Vol. 166, Issue 3
  • DOI: 10.1149/2.0281903jes

Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries
journal, July 2018


Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy
journal, October 2017


Phosphorus additives for improving high voltage stability and safety of lithium ion batteries
journal, June 2017


Stable cycling of high-voltage lithium metal batteries in ether electrolytes
journal, July 2018


Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries
journal, January 2018

  • Suo, Liumin; Xue, Weijiang; Gobet, Mallory
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 6
  • DOI: 10.1073/pnas.1712895115

Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries
journal, August 2018


Ultimate Limits to Intercalation Reactions for Lithium Batteries
journal, October 2014

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr5003003

Review—SEI: Past, Present and Future
journal, January 2017

  • Peled, E.; Menkin, S.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1441707jes

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

    Works referencing / citing this record:

    In Situ Generation of Artificial Solid‐Electrolyte Interphases on 3D Conducting Scaffolds for High‐Performance Lithium‐Metal Anodes
    journal, January 2020


    Localized high concentration electrolyte behavior near a lithium–metal anode surface
    journal, January 2019

    • Zheng, Yu; Soto, Fernando A.; Ponce, Victor
    • Journal of Materials Chemistry A, Vol. 7, Issue 43
    • DOI: 10.1039/c9ta08935g