DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reversible epitaxial electrodeposition of metals in battery anodes

Abstract

The propensity of metals to form irregular and nonplanar electrodeposits at liquid-solid interfaces has emerged as a fundamental barrier to high-energy, rechargeable batteries that use metal anodes. We report an epitaxial mechanism to regulate nucleation, growth, and reversibility of metal anodes. The crystallographic, surface texturing, and electrochemical criteria for reversible epitaxial electrodeposition of metals are defined and their effectiveness demonstrated by using zinc (Zn), a safe, low-cost, and energy-dense battery anode material. Graphene, with a low lattice mismatch for Zn, is shown to be effective in driving deposition of Zn with a locked crystallographic orientation relation. The resultant epitaxial Zn anodes achieve exceptional reversibility over thousands of cycles at moderate and high rates. Reversible electrochemical epitaxy of metals provides a general pathway toward energy-dense batteries with high reversibility.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [4]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [6];  [7];  [8]; ORCiD logo [7]; ORCiD logo [9]
  1. Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA.
  2. Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
  3. Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
  4. Energy Sciences Directorate, Brookhaven National Laboratory, Interdisciplinary Sciences Building, Building 734, Upton, NY 11973, USA.
  5. Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
  6. Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.
  7. Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA., Energy Sciences Directorate, Brookhaven National Laboratory, Interdisciplinary Sciences Building, Building 734, Upton, NY 11973, USA., Department of Materials Science and Chemical Engineering, Stony Brook, NY 11794, USA.
  8. Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA., Energy Sciences Directorate, Brookhaven National Laboratory, Interdisciplinary Sciences Building, Building 734, Upton, NY 11973, USA.
  9. Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA., Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Mesoscale Transport Properties (m2mt); Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
OSTI Identifier:
1572594
Alternate Identifier(s):
OSTI ID: 1580222
Report Number(s):
BNL-212445-2019-JAAM
Journal ID: ISSN 0036-8075; /sci/366/6465/645.atom
Grant/Contract Number:  
SC0012673; SC0012704; SC00112704; AC02-98CH10886; DMR-1719875; DMR-1338010
Resource Type:
Published Article
Journal Name:
Science
Additional Journal Information:
Journal Name: Science Journal Volume: 366 Journal Issue: 6465; Journal ID: ISSN 0036-8075
Publisher:
American Association for the Advancement of Science (AAAS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Zheng, Jingxu, Zhao, Qing, Tang, Tian, Yin, Jiefu, Quilty, Calvin D., Renderos, Genesis D., Liu, Xiaotun, Deng, Yue, Wang, Lei, Bock, David C., Jaye, Cherno, Zhang, Duhan, Takeuchi, Esther S., Takeuchi, Kenneth J., Marschilok, Amy C., and Archer, Lynden A.. Reversible epitaxial electrodeposition of metals in battery anodes. United States: N. p., 2019. Web. doi:10.1126/science.aax6873.
Zheng, Jingxu, Zhao, Qing, Tang, Tian, Yin, Jiefu, Quilty, Calvin D., Renderos, Genesis D., Liu, Xiaotun, Deng, Yue, Wang, Lei, Bock, David C., Jaye, Cherno, Zhang, Duhan, Takeuchi, Esther S., Takeuchi, Kenneth J., Marschilok, Amy C., & Archer, Lynden A.. Reversible epitaxial electrodeposition of metals in battery anodes. United States. https://doi.org/10.1126/science.aax6873
Zheng, Jingxu, Zhao, Qing, Tang, Tian, Yin, Jiefu, Quilty, Calvin D., Renderos, Genesis D., Liu, Xiaotun, Deng, Yue, Wang, Lei, Bock, David C., Jaye, Cherno, Zhang, Duhan, Takeuchi, Esther S., Takeuchi, Kenneth J., Marschilok, Amy C., and Archer, Lynden A.. Thu . "Reversible epitaxial electrodeposition of metals in battery anodes". United States. https://doi.org/10.1126/science.aax6873.
@article{osti_1572594,
title = {Reversible epitaxial electrodeposition of metals in battery anodes},
author = {Zheng, Jingxu and Zhao, Qing and Tang, Tian and Yin, Jiefu and Quilty, Calvin D. and Renderos, Genesis D. and Liu, Xiaotun and Deng, Yue and Wang, Lei and Bock, David C. and Jaye, Cherno and Zhang, Duhan and Takeuchi, Esther S. and Takeuchi, Kenneth J. and Marschilok, Amy C. and Archer, Lynden A.},
abstractNote = {The propensity of metals to form irregular and nonplanar electrodeposits at liquid-solid interfaces has emerged as a fundamental barrier to high-energy, rechargeable batteries that use metal anodes. We report an epitaxial mechanism to regulate nucleation, growth, and reversibility of metal anodes. The crystallographic, surface texturing, and electrochemical criteria for reversible epitaxial electrodeposition of metals are defined and their effectiveness demonstrated by using zinc (Zn), a safe, low-cost, and energy-dense battery anode material. Graphene, with a low lattice mismatch for Zn, is shown to be effective in driving deposition of Zn with a locked crystallographic orientation relation. The resultant epitaxial Zn anodes achieve exceptional reversibility over thousands of cycles at moderate and high rates. Reversible electrochemical epitaxy of metals provides a general pathway toward energy-dense batteries with high reversibility.},
doi = {10.1126/science.aax6873},
journal = {Science},
number = 6465,
volume = 366,
place = {United States},
year = {Thu Oct 31 00:00:00 EDT 2019},
month = {Thu Oct 31 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1126/science.aax6873

Citation Metrics:
Cited by: 699 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries
journal, August 2018


Physical Orphaning versus Chemical Instability: Is Dendritic Electrodeposition of Li Fatal?
journal, May 2019


Epitaxial deposition of metals on uniaxial oriented semi-crystalline polymers
journal, March 1987

  • Petermann, J.; Broza, G.
  • Journal of Materials Science, Vol. 22, Issue 3
  • DOI: 10.1007/BF01103557

Mass Synthesis of Large, Single-Crystal Au Nanosheets Based on a Polyol Process
journal, January 2006

  • Li, C. C.; Cai, W. P.; Cao, B. Q.
  • Advanced Functional Materials, Vol. 16, Issue 1
  • DOI: 10.1002/adfm.200500209

Solid electrolyte interphases for high-energy aqueous aluminum electrochemical cells
journal, November 2018

  • Zhao, Qing; Zachman, Michael J.; Al Sadat, Wajdi I.
  • Science Advances, Vol. 4, Issue 11
  • DOI: 10.1126/sciadv.aau8131

Origin of Electrochemical, Structural, and Transport Properties in Nonaqueous Zinc Electrolytes
journal, January 2016

  • Han, Sang-Don; Rajput, Nav Nidhi; Qu, Xiaohui
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 5
  • DOI: 10.1021/acsami.5b10024

Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration
journal, June 2016

  • Higashi, Shougo; Lee, Seok Woo; Lee, Jang Soo
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11801

An ultrafast rechargeable aluminium-ion battery
journal, April 2015

  • Lin, Meng-Chang; Gong, Ming; Lu, Bingan
  • Nature, Vol. 520, Issue 7547
  • DOI: 10.1038/nature14340

Electrodeposition of Epitaxial Cu(111) Thin Films on Au(111) Using Defect-Mediated Growth
journal, July 2001

  • Hwang, Seongpil; Oh, Ilwhan; Kwak, Juhyoun
  • Journal of the American Chemical Society, Vol. 123, Issue 29
  • DOI: 10.1021/ja015666n

Conductive graphite fiber as a stable host for zinc metal anodes
journal, August 2017


Computer Simulation of Dendritic Electrodeposition
journal, January 1985

  • Voss, Richard F.
  • Journal of The Electrochemical Society, Vol. 132, Issue 2
  • DOI: 10.1149/1.2113841

Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal
journal, January 2017


Highly Reversible and Rechargeable Safe Zn Batteries Based on a Triethyl Phosphate Electrolyte
journal, January 2019


Metal electrodeposition on single crystal metal surfaces mechanisms, structure and applications
journal, June 2006


Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Orientation dynamics of dilute functionalized graphene suspensions in oscillatory flow
journal, June 2018


Electrical Energy Storage and Intercalation Chemistry
journal, June 1976


Electrochemical Epitaxial Growth of a Pt(111) Phase on an Au(111) Electrode
journal, September 1997

  • Uosaki, Kohei; Ye, Shen; Naohara, Hideo
  • The Journal of Physical Chemistry B, Vol. 101, Issue 38
  • DOI: 10.1021/jp9717406

Design principles for electrolytes and interfaces for stable lithium-metal batteries
journal, September 2016


Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities
journal, September 2017


A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode
journal, August 2016


Transformation of Leaf-like Zinc Dendrite in Oxidation and Reduction Cycle
journal, June 2015


Suppression of Dendrite Formation and Corrosion on Zinc Anode of Secondary Aqueous Batteries
journal, March 2017

  • Sun, Kyung E. K.; Hoang, Tuan K. A.; Doan, The Nam Long
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 11
  • DOI: 10.1021/acsami.6b16560

Nonplanar Electrode Architectures for Ultrahigh Areal Capacity Batteries
journal, December 2018


Electrodeposited Epitaxial Cu(100) on Si(100) and Lift-Off of Single Crystal-like Cu(100) Foils
journal, October 2018

  • Hull, Caleb M.; Switzer, Jay A.
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 44
  • DOI: 10.1021/acsami.8b13188

An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc
journal, February 2018


Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy
journal, October 2017


Highly reversible zinc metal anode for aqueous batteries
journal, April 2018


Dendrite-Free Nanocrystalline Zinc Electrodeposition from an Ionic Liquid Containing Nickel Triflate for Rechargeable Zn-Based Batteries
journal, January 2016

  • Liu, Zhen; Cui, Tong; Pulletikurthi, Giridhar
  • Angewandte Chemie International Edition, Vol. 55, Issue 8
  • DOI: 10.1002/anie.201509364

Transition of lithium growth mechanisms in liquid electrolytes
journal, January 2016

  • Bai, Peng; Li, Ju; Brushett, Fikile R.
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE01674J

Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries
journal, March 2017

  • Yadav, Gautam G.; Gallaway, Joshua W.; Turney, Damon E.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14424

Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion
journal, April 2017

  • Parker, Joseph F.; Chervin, Christopher N.; Pala, Irina R.
  • Science, Vol. 356, Issue 6336
  • DOI: 10.1126/science.aak9991

Crystal Growth of Electrodeposited Zinc
journal, January 1959

  • Sato, Ryoitiro
  • Journal of The Electrochemical Society, Vol. 106, Issue 3
  • DOI: 10.1149/1.2427309

Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
journal, December 2017


The rechargeable aluminum-ion battery
journal, January 2011

  • Jayaprakash, N.; Das, S. K.; Archer, L. A.
  • Chemical Communications, Vol. 47, Issue 47
  • DOI: 10.1039/c1cc15779e

Works referencing / citing this record:

Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries
journal, March 2020

  • Liang, Pengcheng; Yi, Jin; Liu, Xiaoyu
  • Advanced Functional Materials, Vol. 30, Issue 13
  • DOI: 10.1002/adfm.201908528

Proton Intercalation/De‐Intercalation Dynamics in Vanadium Oxides for Aqueous Aluminum Electrochemical Cells
journal, January 2020


Proton Insertion Chemistry of a Zinc–Organic Battery
journal, February 2020


Proton Intercalation/De‐Intercalation Dynamics in Vanadium Oxides for Aqueous Aluminum Electrochemical Cells
journal, February 2020

  • Zhao, Qing; Liu, Luojia; Yin, Jiefu
  • Angewandte Chemie International Edition, Vol. 59, Issue 8
  • DOI: 10.1002/anie.201912634

Proton Insertion Chemistry of a Zinc–Organic Battery
journal, February 2020

  • Tie, Zhiwei; Liu, Luojia; Deng, Shenzhen
  • Angewandte Chemie International Edition, Vol. 59, Issue 12
  • DOI: 10.1002/anie.201916529