skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: binary junipr: An Interpretable Probabilistic Model for Discrimination

Authors:
ORCiD logo; ; ;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1572587
Grant/Contract Number:  
SC0013607
Resource Type:
Published Article
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Name: Physical Review Letters Journal Volume: 123 Journal Issue: 18; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society
Country of Publication:
United States
Language:
English

Citation Formats

Andreassen, Anders, Feige, Ilya, Frye, Christopher, and Schwartz, Matthew D. binary junipr: An Interpretable Probabilistic Model for Discrimination. United States: N. p., 2019. Web. doi:10.1103/PhysRevLett.123.182001.
Andreassen, Anders, Feige, Ilya, Frye, Christopher, & Schwartz, Matthew D. binary junipr: An Interpretable Probabilistic Model for Discrimination. United States. doi:10.1103/PhysRevLett.123.182001.
Andreassen, Anders, Feige, Ilya, Frye, Christopher, and Schwartz, Matthew D. Thu . "binary junipr: An Interpretable Probabilistic Model for Discrimination". United States. doi:10.1103/PhysRevLett.123.182001.
@article{osti_1572587,
title = {binary junipr: An Interpretable Probabilistic Model for Discrimination},
author = {Andreassen, Anders and Feige, Ilya and Frye, Christopher and Schwartz, Matthew D.},
abstractNote = {},
doi = {10.1103/PhysRevLett.123.182001},
journal = {Physical Review Letters},
number = 18,
volume = 123,
place = {United States},
year = {2019},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1103/PhysRevLett.123.182001

Save / Share:

Works referenced in this record:

Pulling out all the tops with computer vision and deep learning
journal, October 2018

  • Macaluso, Sebastian; Shih, David
  • Journal of High Energy Physics, Vol. 2018, Issue 10
  • DOI: 10.1007/JHEP10(2018)121

Deep-learned Top Tagging with a Lorentz Layer
journal, January 2018


JUNIPR: a framework for unsupervised machine learning in particle physics
journal, February 2019


Jet substructure classification in high-energy physics with deep neural networks
journal, May 2016


Energy flow networks: deep sets for particle jets
journal, January 2019

  • Komiske, Patrick T.; Metodiev, Eric M.; Thaler, Jesse
  • Journal of High Energy Physics, Vol. 2019, Issue 1
  • DOI: 10.1007/JHEP01(2019)121

Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks
journal, October 2008


CaloGAN: Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks
journal, January 2018


Classification without labels: learning from mixed samples in high energy physics
journal, October 2017

  • Metodiev, Eric M.; Nachman, Benjamin; Thaler, Jesse
  • Journal of High Energy Physics, Vol. 2017, Issue 10
  • DOI: 10.1007/JHEP10(2017)174

Pileup Mitigation with Machine Learning (PUMML)
journal, December 2017

  • Komiske, Patrick T.; Metodiev, Eric M.; Nachman, Benjamin
  • Journal of High Energy Physics, Vol. 2017, Issue 12
  • DOI: 10.1007/JHEP12(2017)051

The Machine Learning landscape of top taggers
journal, January 2019


Jet-images — deep learning edition
journal, July 2016

  • de Oliveira, Luke; Kagan, Michael; Mackey, Lester
  • Journal of High Energy Physics, Vol. 2016, Issue 7
  • DOI: 10.1007/JHEP07(2016)069

Deep learning in color: towards automated quark/gluon jet discrimination
journal, January 2017

  • Komiske, Patrick T.; Metodiev, Eric M.; Schwartz, Matthew D.
  • Journal of High Energy Physics, Vol. 2017, Issue 1
  • DOI: 10.1007/JHEP01(2017)110

Deep-learning top taggers or the end of QCD?
journal, May 2017

  • Kasieczka, Gregor; Plehn, Tilman; Russell, Michael
  • Journal of High Energy Physics, Vol. 2017, Issue 5
  • DOI: 10.1007/JHEP05(2017)006

Jet charge and machine learning
journal, October 2018

  • Fraser, Katherine; Schwartz, Matthew D.
  • Journal of High Energy Physics, Vol. 2018, Issue 10
  • DOI: 10.1007/JHEP10(2018)093

Multivariate discrimination and the Higgs+W/Z search
journal, April 2011

  • Gallicchio, Jason; Huth, John; Kagan, Michael
  • Journal of High Energy Physics, Vol. 2011, Issue 4
  • DOI: 10.1007/JHEP04(2011)069

Anomaly Detection for Resonant New Physics with Machine Learning
journal, December 2018


Systematics of quark/gluon tagging
journal, July 2017

  • Gras, Philippe; Höche, Stefan; Kar, Deepak
  • Journal of High Energy Physics, Vol. 2017, Issue 7
  • DOI: 10.1007/JHEP07(2017)091

Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis
journal, September 2017

  • de Oliveira, Luke; Paganini, Michela; Nachman, Benjamin
  • Computing and Software for Big Science, Vol. 1, Issue 1
  • DOI: 10.1007/s41781-017-0004-6

Recursive Neural Networks in Quark/Gluon Tagging
journal, June 2018


Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multilayer Calorimeters
journal, January 2018


Quark and gluon jet substructure
journal, April 2013

  • Gallicchio, Jason; Schwartz, Matthew D.
  • Journal of High Energy Physics, Vol. 2013, Issue 4
  • DOI: 10.1007/JHEP04(2013)090

QCD-aware recursive neural networks for jet physics
journal, January 2019

  • Louppe, Gilles; Cho, Kyunghyun; Becot, Cyril
  • Journal of High Energy Physics, Vol. 2019, Issue 1
  • DOI: 10.1007/JHEP01(2019)057

Light-quark and gluon jet discrimination in $$pp$$ p p collisions at $$\sqrt{s}=7\mathrm {\ TeV}$$ s = 7 TeV with the ATLAS detector
journal, August 2014


Learning to classify from impure samples with high-dimensional data
journal, July 2018


Quark and Gluon Tagging at the LHC
journal, October 2011


Successive combination jet algorithm for hadron collisions
journal, October 1993


Better jet clustering algorithms
journal, August 1997