DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cloud Influence on ERA5 and AMPS Surface Downwelling Longwave Radiation Biases in West Antarctica

Abstract

The surface downwelling longwave radiation component (LW↓) is crucial for the determination of the surface energy budget and has significant implications for the resilience of ice surfaces in the polar regions. Accurate model evaluation of this radiation component requires knowledge about the phase, vertical distribution, and associated temperature of water in the atmosphere, all of which control the LW↓ signal measured at the surface. In this study, we examine the LW↓ model errors found in the Antarctic Mesoscale Prediction System (AMPS) operational forecast model and the ERA5 model relative to observations from the ARM West Antarctic Radiation Experiment (AWARE) campaign at McMurdo Station and the West Antarctic Ice Sheet (WAIS) Divide. The errors are calculated separately for observed clear-sky conditions, ice-cloud occurrences, and liquid-bearing cloud-layer (LBCL) occurrences. The analysis results show a tendency in both models at each site to underestimate the LW↓ during clear-sky conditions, high error variability (standard deviations > 20 W m-2) during any type of cloud occurrence, and negative LW↓ biases when LBCLs are observed (bias magnitudes >15 W m-2 in tenuous LBCL cases and >43 W m-2 in optically thick/opaque LBCLs instances). We suggest that a generally dry and liquid-deficient atmosphere responsible for the identifiedmore » LW↓ biases in both models is the result of excessive ice formation and growth, which could stem from the model initial and lateral boundary conditions, microphysics scheme, aerosol representation, and/or limited vertical resolution« less

Authors:
 [1];  [1];  [2];  [2];  [3];  [4];  [5];  [6]
  1. Pennsylvania State Univ., University Park, PA (United States)
  2. The Ohio State Univ., Columbus, OH (United States)
  3. NASA Goddard Inst. for Space Studies (GISS), New York, NY (United States)
  4. Argonne National Lab. (ANL), Argonne, IL (United States)
  5. Univ. of Wisconsin, Madison, WI (United States)
  6. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); National Aeronautics and Space Administration (NASA); USDOE
OSTI Identifier:
1572106
Alternate Identifier(s):
OSTI ID: 1607640
Grant/Contract Number:  
AC02-06CH11357; SC0017981
Resource Type:
Published Article
Journal Name:
Journal of Climate
Additional Journal Information:
Journal Volume: 32; Journal Issue: 22; Journal ID: ISSN 0894-8755
Publisher:
American Meteorological Society
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Antarctica; Cloud radiative effects; Cloud water; phase; Longwave radiation; Water vapor; Model errors

Citation Formats

Silber, Israel, Verlinde, Johannes, Wang, Sheng-Hung, Bromwich, David H., Fridlind, Ann M., Cadeddu, Maria, Eloranta, Edwin W., and Flynn, Connor J. Cloud Influence on ERA5 and AMPS Surface Downwelling Longwave Radiation Biases in West Antarctica. United States: N. p., 2019. Web. doi:10.1175/JCLI-D-19-0149.1.
Silber, Israel, Verlinde, Johannes, Wang, Sheng-Hung, Bromwich, David H., Fridlind, Ann M., Cadeddu, Maria, Eloranta, Edwin W., & Flynn, Connor J. Cloud Influence on ERA5 and AMPS Surface Downwelling Longwave Radiation Biases in West Antarctica. United States. https://doi.org/10.1175/JCLI-D-19-0149.1
Silber, Israel, Verlinde, Johannes, Wang, Sheng-Hung, Bromwich, David H., Fridlind, Ann M., Cadeddu, Maria, Eloranta, Edwin W., and Flynn, Connor J. Fri . "Cloud Influence on ERA5 and AMPS Surface Downwelling Longwave Radiation Biases in West Antarctica". United States. https://doi.org/10.1175/JCLI-D-19-0149.1.
@article{osti_1572106,
title = {Cloud Influence on ERA5 and AMPS Surface Downwelling Longwave Radiation Biases in West Antarctica},
author = {Silber, Israel and Verlinde, Johannes and Wang, Sheng-Hung and Bromwich, David H. and Fridlind, Ann M. and Cadeddu, Maria and Eloranta, Edwin W. and Flynn, Connor J.},
abstractNote = {The surface downwelling longwave radiation component (LW↓) is crucial for the determination of the surface energy budget and has significant implications for the resilience of ice surfaces in the polar regions. Accurate model evaluation of this radiation component requires knowledge about the phase, vertical distribution, and associated temperature of water in the atmosphere, all of which control the LW↓ signal measured at the surface. In this study, we examine the LW↓ model errors found in the Antarctic Mesoscale Prediction System (AMPS) operational forecast model and the ERA5 model relative to observations from the ARM West Antarctic Radiation Experiment (AWARE) campaign at McMurdo Station and the West Antarctic Ice Sheet (WAIS) Divide. The errors are calculated separately for observed clear-sky conditions, ice-cloud occurrences, and liquid-bearing cloud-layer (LBCL) occurrences. The analysis results show a tendency in both models at each site to underestimate the LW↓ during clear-sky conditions, high error variability (standard deviations > 20 W m-2) during any type of cloud occurrence, and negative LW↓ biases when LBCLs are observed (bias magnitudes >15 W m-2 in tenuous LBCL cases and >43 W m-2 in optically thick/opaque LBCLs instances). We suggest that a generally dry and liquid-deficient atmosphere responsible for the identified LW↓ biases in both models is the result of excessive ice formation and growth, which could stem from the model initial and lateral boundary conditions, microphysics scheme, aerosol representation, and/or limited vertical resolution},
doi = {10.1175/JCLI-D-19-0149.1},
journal = {Journal of Climate},
number = 22,
volume = 32,
place = {United States},
year = {2019},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1175/JCLI-D-19-0149.1

Citation Metrics:
Cited by: 30 works
Citation information provided by
Web of Science

Figures / Tables:

Table 1 Table 1: AMPS and ERA5 surface downwelling longwave radiation ($LW$↓) model-error statistics during different atmospheric regimes at McMurdo Station and the WAIS Divide (LBCL stands for liquid-bearing cloud layer). The Pearson’s correlation coefficient ($r$) is calculated for the raw data at both sites, as well as for the residual datamore » (at McMurdo), after the removal of the annual cycle using a non-linear least-square sine fit.« less

Save / Share:

Works referenced in this record:

Why are mixed-phase altocumulus clouds poorly predicted by large-scale models? Part 1. Physical processes: MIXED-PHASE CLOUDS IN NUMERICAL MODELS
journal, September 2017

  • Barrett, Andrew I.; Hogan, Robin J.; Forbes, Richard M.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 18
  • DOI: 10.1002/2016JD026321

Why are mixed-phase altocumulus clouds poorly predicted by large-scale models? Part 2. Vertical resolution sensitivity and parameterization: RESOLUTION SENSITIVITY OF ALTOCUMULUS
journal, September 2017

  • Barrett, Andrew I.; Hogan, Robin J.; Forbes, Richard M.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 18
  • DOI: 10.1002/2016JD026322

Ice-forming nuclei in Antarctica: New and past measurements
journal, August 2014


July 2012 Greenland melt extent enhanced by low-level liquid clouds
journal, April 2013

  • Bennartz, R.; Shupe, M. D.; Turner, D. D.
  • Nature, Vol. 496, Issue 7443
  • DOI: 10.1038/nature12002

An Assessment of Precipitation Changes over Antarctica and the Southern Ocean since 1989 in Contemporary Global Reanalyses
journal, August 2011

  • Bromwich, David H.; Nicolas, Julien P.; Monaghan, Andrew J.
  • Journal of Climate, Vol. 24, Issue 16
  • DOI: 10.1175/2011JCLI4074.1

Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic: POLAR WEATHER RESEARCH AND FORECASTING MODEL
journal, January 2013

  • Bromwich, David H.; Otieno, Francis O.; Hines, Keith M.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 2
  • DOI: 10.1029/2012JD018139

Effect of the Oxygen Line-Parameter Modeling on Temperature and Humidity Retrievals From Ground-Based Microwave Radiometers
journal, July 2007

  • Cadeddu, Maria P.; Payne, Vivienne H.; Clough, S. A.
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, Issue 7
  • DOI: 10.1109/TGRS.2007.894063

A Neural Network for Real-Time Retrievals of PWV and LWP From Arctic Millimeter-Wave Ground-Based Observations
journal, July 2009

  • Cadeddu, M. P.; Turner, D. D.; Liljegren, J. C.
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, Issue 7
  • DOI: 10.1109/TGRS.2009.2013205

Mesoscale cyclogenesis dynamics over the southwestern Ross Sea, Antarctica
journal, January 1993

  • Carrasco, Jorge F.; Bromwich, David H.
  • Journal of Geophysical Research, Vol. 98, Issue D7
  • DOI: 10.1029/92JD02821

Distribution and Characteristics of Mesoscale Cyclones in the Antarctic: Ross Sea Eastward to the Weddell Sea*
journal, February 2003


Ubiquitous low‐level liquid‐containing Arctic clouds: New observations and climate model constraints from CALIPSO‐GOCCP
journal, October 2012

  • Cesana, G.; Kay, J. E.; Chepfer, H.
  • Geophysical Research Letters, Vol. 39, Issue 20
  • DOI: 10.1029/2012GL053385

Aerosol indirect effect dictated by liquid clouds: AEROSOL INDIRECT EFFECT
journal, December 2016

  • Christensen, Matthew W.; Chen, Yi-Chun; Stephens, Graeme L.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 24
  • DOI: 10.1002/2016JD025245

The influence of the Amundsen Sea Low on the winds in the Ross Sea and surroundings: Insights from a synoptic climatology
journal, March 2015

  • Coggins, Jack H. J.; McDonald, Adrian J.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 6
  • DOI: 10.1002/2014JD022830

Evidence of liquid dependent ice nucleation in high-latitude stratiform clouds from surface remote sensors: LIQUID INDUCED ICE NUCLEATION
journal, January 2011

  • de Boer, G.; Morrison, H.; Shupe, M. D.
  • Geophysical Research Letters, Vol. 38, Issue 1
  • DOI: 10.1029/2010GL046016

The ERA-Interim reanalysis: configuration and performance of the data assimilation system
journal, April 2011

  • Dee, D. P.; Uppala, S. M.; Simmons, A. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue 656
  • DOI: 10.1002/qj.828

Novel polarization-sensitive micropulse lidar measurement technique
journal, January 2007

  • Flynn, Connor J.; Mendoza, Albert; Zheng, Yunhui
  • Optics Express, Vol. 15, Issue 6
  • DOI: 10.1364/OE.15.002785

New insight into the disappearing Arctic sea ice
journal, January 2006

  • Francis, Jennifer A.; Hunter, Elias
  • Eos, Transactions American Geophysical Union, Vol. 87, Issue 46
  • DOI: 10.1029/2006EO460001

Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes
journal, April 2006


A Method for Adaptive Habit Prediction in Bulk Microphysical Models. Part I: Theoretical Development
journal, February 2013

  • Harrington, Jerry Y.; Sulia, Kara; Morrison, Hugh
  • Journal of the Atmospheric Sciences, Vol. 70, Issue 2
  • DOI: 10.1175/JAS-D-12-040.1

Microphysics of summer clouds in central West Antarctica simulated by the Polar Weather Research and Forecasting Model (WRF) and the Antarctic Mesoscale Prediction System (AMPS)
journal, January 2019

  • Hines, Keith M.; Bromwich, David H.; Wang, Sheng-Hung
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 19
  • DOI: 10.5194/acp-19-12431-2019

The Retrieval of Ice Water Content from Radar Reflectivity Factor and Temperature and Its Use in Evaluating a Mesoscale Model
journal, February 2006

  • Hogan, Robin J.; Mittermaier, Marion P.; Illingworth, Anthony J.
  • Journal of Applied Meteorology and Climatology, Vol. 45, Issue 2
  • DOI: 10.1175/JAM2340.1

An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET
journal, June 2001

  • Holben, B. N.; Tanré, D.; Smirnov, A.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D11
  • DOI: 10.1029/2001JD900014

A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation
journal, January 2004


The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE: AEROSOL EFFECTS ON ARCTIC STRATUS
journal, August 2012

  • Jackson, Robert C.; McFarquhar, Greg M.; Korolev, Alexei V.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D15
  • DOI: 10.1029/2012JD017668

Validation of the summertime surface energy budget of Larsen C Ice Shelf (Antarctica) as represented in three high-resolution atmospheric models: Surface energy budget of Larsen C
journal, February 2015

  • King, J. C.; Gadian, A.; Kirchgaessner, A.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 4
  • DOI: 10.1002/2014JD022604

Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: single-layer cloud
journal, April 2009

  • Klein, Stephen A.; McCoy, Renata B.; Morrison, Hugh
  • Quarterly Journal of the Royal Meteorological Society, Vol. 135, Issue 641
  • DOI: 10.1002/qj.416

Polar clouds and radiation in satellite observations, reanalyses, and climate models: POLAR CLOUDS AND RADIATION
journal, April 2017

  • Lenaerts, Jan T. M.; Van Tricht, Kristof; Lhermitte, Stef
  • Geophysical Research Letters, Vol. 44, Issue 7
  • DOI: 10.1002/2016GL072242

The microphysics of clouds over the Antarctic Peninsula – Part 2: modelling aspects within Polar WRF
journal, January 2017

  • Listowski, Constantino; Lachlan-Cope, Tom
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 17
  • DOI: 10.5194/acp-17-10195-2017

A climatologically significant aerosol longwave indirect effect in the Arctic
journal, January 2006


Expected magnitude of the aerosol shortwave indirect effect in springtime Arctic liquid water clouds
journal, January 2007

  • Lubin, Dan; Vogelmann, Andrew M.
  • Geophysical Research Letters, Vol. 34, Issue 11
  • DOI: 10.1029/2006GL028750

An Arctic CCN-limited cloud-aerosol regime
journal, January 2011

  • Mauritsen, T.; Sedlar, J.; Tjernström, M.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 1
  • DOI: 10.5194/acp-11-165-2011

Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo
journal, July 2015

  • McCoy, Daniel T.; Burrows, Susannah M.; Wood, Robert
  • Science Advances, Vol. 1, Issue 6
  • DOI: 10.1126/sciadv.1500157

Indirect and Semi-direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds
journal, February 2011

  • McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes
  • Bulletin of the American Meteorological Society, Vol. 92, Issue 2
  • DOI: 10.1175/2010BAMS2935.1

Cloud Radiative Forcing at Summit, Greenland
journal, August 2015

  • Miller, Nathaniel B.; Shupe, Matthew D.; Cox, Christopher J.
  • Journal of Climate, Vol. 28, Issue 15
  • DOI: 10.1175/JCLI-D-15-0076.1

The Climate of the McMurdo, Antarctica, Region as Represented by One Year of Forecasts from the Antarctic Mesoscale Prediction System
journal, April 2005

  • Monaghan, Andrew J.; Bromwich, David H.; Powers, Jordan G.
  • Journal of Climate, Vol. 18, Issue 8
  • DOI: 10.1175/JCLI3336.1

Review of the vapour pressures of ice and supercooled water for atmospheric applications
journal, April 2005

  • Murphy, D. M.; Koop, T.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 131, Issue 608
  • DOI: 10.1256/qj.04.94

Climate of West Antarctica and Influence of Marine Air Intrusions
journal, January 2011


January 2016 extensive summer melt in West Antarctica favoured by strong El Niño
journal, June 2017

  • Nicolas, Julien P.; Vogelmann, Andrew M.; Scott, Ryan C.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15799

Analysis of the Ross Ice Shelf Airstream Forcing Mechanisms Using Self-Organizing Maps
journal, December 2014


Physical Basis for the Temperature-Based Melt-Index Method
journal, April 2001


Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions
journal, October 2016


Role of air-mass transformations in exchange between the Arctic and mid-latitudes
journal, October 2018


A Decade of Antarctic Science Support Through Amps
journal, November 2012

  • Powers, Jordan G.; Manning, Kevin W.; Bromwich, David H.
  • Bulletin of the American Meteorological Society, Vol. 93, Issue 11
  • DOI: 10.1175/BAMS-D-11-00186.1

Aerosol-driven droplet concentrations dominate coverage and water of oceanic low-level clouds
journal, January 2019


Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model
journal, March 2018


Mixed-phase cloud radiative properties over Ross Island, Antarctica: The influence of various synoptic-scale atmospheric circulation regimes
journal, June 2014

  • Scott, Ryan C.; Lubin, Dan
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 11
  • DOI: 10.1002/2013JD021132

Unique manifestations of mixed‐phase cloud microphysics over Ross Island and the Ross Ice Shelf, Antarctica
journal, March 2016

  • Scott, Ryan C.; Lubin, Dan
  • Geophysical Research Letters, Vol. 43, Issue 6
  • DOI: 10.1002/2015GL067246

Meteorological Drivers and Large-Scale Climate Forcing of West Antarctic Surface Melt
journal, February 2019

  • Scott, Ryan C.; Nicolas, Julien P.; Bromwich, David H.
  • Journal of Climate, Vol. 32, Issue 3
  • DOI: 10.1175/JCLI-D-18-0233.1

Clouds, warm air, and a climate cooling signal over the summer Arctic
journal, January 2017

  • Sedlar, Joseph; Tjernström, Michael
  • Geophysical Research Letters, Vol. 44, Issue 2
  • DOI: 10.1002/2016GL071959

Optical, chemical and physical properties of aerosols over the antarctic ice sheet
journal, January 1980


Antarctic aerosols: A review
journal, January 1988


Antarctic Cloud Macrophysical, Thermodynamic Phase, and Atmospheric Inversion Coupling Properties at McMurdo Station: I. Principal Data Processing and Climatology
journal, June 2018

  • Silber, Israel; Verlinde, Johannes; Eloranta, Edwin W.
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 11
  • DOI: 10.1029/2018JD028279

Contribution of particle formation to global cloud condensation nuclei concentrations
journal, January 2008

  • Spracklen, Dominick V.; Carslaw, Kenneth S.; Kulmala, Markku
  • Geophysical Research Letters, Vol. 35, Issue 6
  • DOI: 10.1029/2007GL033038

Representation of Clouds in Large-Scale Models
journal, November 1993


Retrieving Liquid Wat0er Path and Precipitable Water Vapor From the Atmospheric Radiation Measurement (ARM) Microwave Radiometers
journal, November 2007

  • Turner, David D.; Clough, Shepard A.; Liljegren, James C.
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, Issue 11
  • DOI: 10.1109/TGRS.2007.903703

Thin Liquid Water Clouds: Their Importance and Our Challenge
journal, February 2007

  • Turner, D. D.; Vogelmann, A. M.; Austin, R. T.
  • Bulletin of the American Meteorological Society, Vol. 88, Issue 2
  • DOI: 10.1175/BAMS-88-2-177

Surface energy budget on Larsen and Wilkins ice shelves in the Antarctic Peninsula: results based on reanalyses in 1989–2010
journal, January 2014


Atmosphere-sea ice interaction in early summer in the Antarctic: evaluation and challenges of a regional atmospheric model: Antarctic Atmosphere-Sea Ice Interaction
journal, October 2013

  • Valkonen, T.; Vihma, T.; Johansson, M. M.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 140, Issue 682
  • DOI: 10.1002/qj.2237

An evaluation of ice formation in large-eddy simulations of supercooled Arctic stratocumulus using ground-based lidar and cloud radar
journal, January 2009

  • van Diedenhoven, B.; Fridlind, A. M.; Ackerman, A. S.
  • Journal of Geophysical Research, Vol. 114, Issue D10
  • DOI: 10.1029/2008JD011198

Clouds enhance Greenland ice sheet meltwater runoff
journal, January 2016

  • Van Tricht, K.; Lhermitte, S.; Lenaerts, J. T. M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10266

Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016)
journal, January 2018

  • van Wessem, Jan Melchior; van de Berg, Willem Jan; Noël, Brice P. Y.
  • The Cryosphere, Vol. 12, Issue 4
  • DOI: 10.5194/tc-12-1479-2018

Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles
journal, February 2018

  • Vergara-Temprado, Jesús; Miltenberger, Annette K.; Furtado, Kalli
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 11
  • DOI: 10.1073/pnas.1721627115

Evaluation of the AMPS Boundary Layer Simulations on the Ross Ice Shelf with Tower Observations
journal, November 2016

  • Wille, Jonathan D.; Bromwich, David H.; Nigro, Melissa A.
  • Journal of Applied Meteorology and Climatology, Vol. 55, Issue 11
  • DOI: 10.1175/JAMC-D-16-0032.1

Evaluation of the AMPS Boundary Layer Simulations on the Ross Ice Shelf, Antarctica, with Unmanned Aircraft Observations
journal, August 2017

  • Wille, Jonathan D.; Bromwich, David H.; Cassano, John J.
  • Journal of Applied Meteorology and Climatology, Vol. 56, Issue 8
  • DOI: 10.1175/JAMC-D-16-0339.1

Antarctic clouds studied for first time in five decades
journal, January 2016


Large-scale circulation associated with moisture intrusions into the Arctic during winter: MOISTURE INTRUSIONS DURING ARCTIC WINTER
journal, September 2013

  • Woods, Cian; Caballero, Rodrigo; Svensson, Gunilla
  • Geophysical Research Letters, Vol. 40, Issue 17
  • DOI: 10.1002/grl.50912

Works referencing / citing this record:

Persistent Supercooled Drizzle at Temperatures Below −25 °C Observed at McMurdo Station, Antarctica
journal, October 2019

  • Silber, Israel; Fridlind, Ann M.; Verlinde, Johannes
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 20
  • DOI: 10.1029/2019jd030882

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.