skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries

Abstract

All-solid-state batteries show great potential for achieving high energy density with less safety problems; however, (electro)chemical issues at the solid electrolyte/electrode interface may severely limit their performance. In this work, the electrochemical stability and chemical reactivity of a wide range of potential Na solid-state electrolyte chemistries were investigated using density functional theory calculations. In general, lower voltage limits are predicted for both the reduction and oxidation of Na compounds compared with those of their Li counterparts. The lower reduction limits for the Na compounds indicate their enhanced cathodic stability as well as the possibility of stable sodium metal cycling against a number of oxides and borohydrides. With increasing Na content (or chemical potential), improved cathodic stability but also reduced anodic stability are observed. An increase in the oxidation voltage is shown for Na polyanion systems, including borohydrides, NaSICON-type oxides, and aluminates, due to the covalent stabilization of the anions. In addition, the oxides exhibit remarkable chemical stability when in contact with various cathode materials (layered transition metal oxides and fluorophosphates), whereas the chalcogenides predictably display narrow electrochemical windows and high chemical reactivity. Our findings indicate some promising candidates for solid-state conductors and/or protective coating materials to enable the operation ofmore » high-energy-density all-solid-state Na batteries.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [4]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Samsung Research America, Burlington, MA (United States)
  3. Univ. of Michigan—Shanghai Jiao Tong Univ. Joint Inst., Shanghai (China)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1571994
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 7; Journal Issue: 14; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Lacivita, Valentina, Wang, Yan, Bo, Shou -Hang, and Ceder, Gerbrand. Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries. United States: N. p., 2019. Web. doi:10.1039/c8ta10498k.
Lacivita, Valentina, Wang, Yan, Bo, Shou -Hang, & Ceder, Gerbrand. Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries. United States. doi:10.1039/c8ta10498k.
Lacivita, Valentina, Wang, Yan, Bo, Shou -Hang, and Ceder, Gerbrand. Mon . "Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries". United States. doi:10.1039/c8ta10498k. https://www.osti.gov/servlets/purl/1571994.
@article{osti_1571994,
title = {Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries},
author = {Lacivita, Valentina and Wang, Yan and Bo, Shou -Hang and Ceder, Gerbrand},
abstractNote = {All-solid-state batteries show great potential for achieving high energy density with less safety problems; however, (electro)chemical issues at the solid electrolyte/electrode interface may severely limit their performance. In this work, the electrochemical stability and chemical reactivity of a wide range of potential Na solid-state electrolyte chemistries were investigated using density functional theory calculations. In general, lower voltage limits are predicted for both the reduction and oxidation of Na compounds compared with those of their Li counterparts. The lower reduction limits for the Na compounds indicate their enhanced cathodic stability as well as the possibility of stable sodium metal cycling against a number of oxides and borohydrides. With increasing Na content (or chemical potential), improved cathodic stability but also reduced anodic stability are observed. An increase in the oxidation voltage is shown for Na polyanion systems, including borohydrides, NaSICON-type oxides, and aluminates, due to the covalent stabilization of the anions. In addition, the oxides exhibit remarkable chemical stability when in contact with various cathode materials (layered transition metal oxides and fluorophosphates), whereas the chalcogenides predictably display narrow electrochemical windows and high chemical reactivity. Our findings indicate some promising candidates for solid-state conductors and/or protective coating materials to enable the operation of high-energy-density all-solid-state Na batteries.},
doi = {10.1039/c8ta10498k},
journal = {Journal of Materials Chemistry. A},
number = 14,
volume = 7,
place = {United States},
year = {2019},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Sodium ion-conducting solid electrolytes in the system Na3PO4Na2SO4
journal, July 1987


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

NASICON solid electrolytes
journal, March 1986


Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12
journal, February 1976


Fast Na+-ion transport in skeleton structures
journal, February 1976


Conductivity of 70Li2S·30P2S5 glasses and glass–ceramics added with lithium halides
journal, October 2014


A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
journal, January 2014

  • Seino, Yoshikatsu; Ota, Tsuyoshi; Takada, Kazunori
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE41655K

Ion transport in sodium ion conducting solid electrolytes
journal, October 2012


Projector augmented-wave method
journal, December 1994


Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage
journal, January 2015

  • Thangadurai, Venkataraman; Pinzaru, Dana; Narayanan, Sumaletha
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 2
  • DOI: 10.1021/jz501828v

Na 3 SbS 4 : A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries
journal, July 2016

  • Banerjee, Abhik; Park, Kern Ho; Heo, Jongwook W.
  • Angewandte Chemie, Vol. 128, Issue 33
  • DOI: 10.1002/ange.201604158

Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy
journal, October 2015


Ionic Motion in Crystalline Cryolite
journal, August 2006

  • Foy, Lindsay; Madden, Paul A.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 31
  • DOI: 10.1021/jp062563o

Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations
journal, October 2015

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 42
  • DOI: 10.1021/acsami.5b07517

Data Mined Ionic Substitutions for the Discovery of New Compounds
journal, January 2011

  • Hautier, Geoffroy; Fischer, Chris; Ehrlacher, Virginie
  • Inorganic Chemistry, Vol. 50, Issue 2
  • DOI: 10.1021/ic102031h

Lithium superionic conduction in lithium borohydride accompanied by structural transition
journal, November 2007

  • Matsuo, Motoaki; Nakamori, Yuko; Orimo, Shin-ichi
  • Applied Physics Letters, Vol. 91, Issue 22
  • DOI: 10.1063/1.2817934

Layered Oxide Cathodes for Sodium-Ion Batteries: Phase Transition, Air Stability, and Performance
journal, November 2017


Development of Sodium-Sulfur Batteries
journal, July 2004


Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor
journal, September 2016

  • Chu, Iek-Heng; Kompella, Christopher S.; Nguyen, Han
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep33733

High lithium ionic conductivity in the garnet-type oxide Li7−XLa3(Zr2−X, NbX)O12 (X=0–2)
journal, March 2011


Sodium Ion Transport Mechanisms in Antiperovskite Electrolytes Na 3 OBr and Na 4 OI 2 : An in Situ Neutron Diffraction Study
journal, June 2016


Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials
journal, January 2011

  • Ong, Shyue Ping; Chevrier, Vincent L.; Hautier, Geoffroy
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01782a

A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3
journal, July 2006


Sodium and sodium-ion energy storage batteries
journal, August 2012

  • Ellis, Brian L.; Nazar, Linda F.
  • Current Opinion in Solid State and Materials Science, Vol. 16, Issue 4, p. 168-177
  • DOI: 10.1016/j.cossms.2012.04.002

First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material
journal, December 2011

  • Mo, Yifei; Ong, Shyue Ping; Ceder, Gerbrand
  • Chemistry of Materials, Vol. 24, Issue 1, p. 15-17
  • DOI: 10.1021/cm203303y

Electrical conductivity of superionic solid solutions of Na2SO4 with Mx (XO4)y -[M=Na, K, Rb, Cd, GdandX=W, Mo, S, Si;x=1, 2, 4 andy=1, 3]
journal, February 1986


Preparation, structure and ionic conductivity of lithium phosphide
journal, April 1989


A new sodium aluminate Na17Al5O16
journal, January 1982

  • Barker, Marten G.; Gadd, Paul G.; Wallwork, Stephen C.
  • Journal of the Chemical Society, Chemical Communications, Issue 9
  • DOI: 10.1039/c39820000516

Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na 3 PSe 4
journal, December 2015


Challenges and Perspectives for NASICON-Type Electrode Materials for Advanced Sodium-Ion Batteries
journal, June 2017


Main Challenges for High Performance NAS Battery: Materials and Interfaces
journal, May 2012

  • Wen, Zhaoyin; Hu, Yingying; Wu, Xiangwei
  • Advanced Functional Materials, Vol. 23, Issue 8
  • DOI: 10.1002/adfm.201200473

Sodium-Metal Halide and Sodium-Air Batteries
journal, June 2014


First-principles study of fast Na diffusion in Na 3 P
journal, September 2014


Ab initiomolecular dynamics for liquid metals
journal, January 1993


First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries
journal, January 2016

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • Journal of Materials Chemistry A, Vol. 4, Issue 9
  • DOI: 10.1039/C5TA08574H

Glass Formation and Ionic Conduction Behavior in GeSe 2 -Ga 2 Se 3 -NaI Chalcogenide System
journal, August 2015

  • Zhai, Sumin; Li, Legang; Chen, Feifei
  • Journal of the American Ceramic Society, Vol. 98, Issue 12
  • DOI: 10.1111/jace.13815

Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries
journal, January 2012

  • Hayashi, Akitoshi; Noi, Kousuke; Sakuda, Atsushi
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1843

Superionically conducting β′′-Al 2 O 3 thin films processed using flame synthesized nanopowders
journal, January 2018

  • Yi, Eongyu; Temeche, Eleni; Laine, Richard M.
  • Journal of Materials Chemistry A, Vol. 6, Issue 26
  • DOI: 10.1039/C8TA02907E

Theory of Polyhedral Molecules. I. Physical Factorizations of the Secular Equation
journal, April 1962

  • Hoffmann, Roald; Lipscomb, William N.
  • The Journal of Chemical Physics, Vol. 36, Issue 8
  • DOI: 10.1063/1.1732849

Die Kristallstrukturen von ?-Na2S2 und K2S2, ?-Na2S2 und Na2Se2
journal, January 1962

  • F�ppl, H.; Busmann, E.; Frorath, F. -K.
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 314, Issue 1-2
  • DOI: 10.1002/zaac.19623140104

Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability
journal, April 2012


The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage
journal, February 2015

  • Kundu, Dipan; Talaie, Elahe; Duffort, Victor
  • Angewandte Chemie International Edition, Vol. 54, Issue 11
  • DOI: 10.1002/anie.201410376

Synthesis, structure determination, and ionic conductivity of sodium tetrathiophosphate
journal, July 1992


Electronic structure of heazlewoodite Ni 3 S 2
journal, November 1996


Improved electrochemical performance of NaAlO2-coated LiCoO2 for lithium-ion batteries
journal, November 2016

  • Shen, Bin; Zuo, Pengjian; Fan, Peng
  • Journal of Solid State Electrochemistry, Vol. 21, Issue 4
  • DOI: 10.1007/s10008-016-3475-1

Compatibility issues between electrodes and electrolytes in solid-state batteries
journal, January 2017

  • Tian, Yaosen; Shi, Tan; Richards, William D.
  • Energy & Environmental Science, Vol. 10, Issue 5
  • DOI: 10.1039/C7EE00534B

Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites
journal, October 2015


Preparation and characterization of highly sodium ion conducting Na 3 PS 4 –Na 4 SiS 4 solid electrolytes
journal, January 2014

  • Tanibata, Naoto; Noi, Kousuke; Hayashi, Akitoshi
  • RSC Adv., Vol. 4, Issue 33
  • DOI: 10.1039/C4RA00996G

Design and synthesis of the superionic conductor Na10SnP2S12
journal, March 2016

  • Richards, William D.; Tsujimura, Tomoyuki; Miara, Lincoln J.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11009

All-solid-state lithium battery with LiBH4 solid electrolyte
journal, March 2013


Interfacial Observation between LiCoO 2 Electrode and Li 2 S−P 2 S 5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy
journal, February 2010

  • Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm901819c

Sodium dithiophosphate(V): Crystal structure, sodium ionic conductivity and dismutation
journal, November 2003


Band theory and Mott insulators: Hubbard U instead of Stoner I
journal, July 1991

  • Anisimov, Vladimir I.; Zaanen, Jan; Andersen, Ole K.
  • Physical Review B, Vol. 44, Issue 3, p. 943-954
  • DOI: 10.1103/PhysRevB.44.943

Li−Fe−P−O 2 Phase Diagram from First Principles Calculations
journal, February 2008

  • Ong, Shyue Ping; Wang, Lei; Kang, Byoungwoo
  • Chemistry of Materials, Vol. 20, Issue 5
  • DOI: 10.1021/cm702327g

Formation enthalpies by mixing GGA and GGA + U calculations
journal, July 2011


Ion exchange properties of and rates of ionic diffusion in beta-alumina
journal, September 1967


Nanoscale Stabilization of Sodium Oxides: Implications for Na–O 2 Batteries
journal, January 2014

  • Kang, ShinYoung; Mo, Yifei; Ong, Shyue Ping
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl404557w

The crystal structure of sodium tetrasulphide, Na 2 S 4
journal, July 1973

  • Tegman, R.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 29, Issue 7
  • DOI: 10.1107/S0567740873004735

Interface Stability in Solid-State Batteries
journal, December 2015


Oxidation energies of transition metal oxides within the GGA + U framework
journal, May 2006


Chemical and Morphological Changes of Li–O 2 Battery Electrodes upon Cycling
journal, September 2012

  • Gallant, Betar M.; Mitchell, Robert R.; Kwabi, David G.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 39
  • DOI: 10.1021/jp308093b

Additional Sodium Insertion into Polyanionic Cathodes for Higher-Energy Na-Ion Batteries
journal, May 2017

  • Bianchini, Matteo; Xiao, Penghao; Wang, Yan
  • Advanced Energy Materials, Vol. 7, Issue 18
  • DOI: 10.1002/aenm.201700514

Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery
journal, January 2011


Halide-Stabilized LiBH 4 , a Room-Temperature Lithium Fast-Ion Conductor
journal, January 2009

  • Maekawa, Hideki; Matsuo, Motoaki; Takamura, Hitoshi
  • Journal of the American Chemical Society, Vol. 131, Issue 3
  • DOI: 10.1021/ja807392k

Electrical conductivity in Li 2 O 2 and its role in determining capacity limitations in non-aqueous Li-O 2 batteries
journal, December 2011

  • Viswanathan, V.; Thygesen, K. S.; Hummelshøj, J. S.
  • The Journal of Chemical Physics, Vol. 135, Issue 21
  • DOI: 10.1063/1.3663385

Na-Ion conduction in the solid solutions of Na3PO4/Na2SO4 and Na3AlF6/Na2SO4
journal, September 1988


Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate
journal, January 1990

  • Aono, Hiromichi
  • Journal of The Electrochemical Society, Vol. 137, Issue 4
  • DOI: 10.1149/1.2086597

Rechargeable Sodium All-Solid-State Battery
journal, January 2017


Sodium borohydride as a fuel for the future
journal, October 2011


Interfacial Reactivity Benchmarking of the Sodium Ion Conductors Na 3 PS 4 and Sodium β-Alumina for Protected Sodium Metal Anodes and Sodium All-Solid-State Batteries
journal, October 2016

  • Wenzel, Sebastian; Leichtweiss, Thomas; Weber, Dominik A.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 41
  • DOI: 10.1021/acsami.6b10119

Metal Borohydrides as Electrolytes for Solid-State Li, Na, Mg, and Ca Batteries: A First-Principles Study
journal, October 2017


Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013


Probing Solid–Solid Interfacial Reactions in All-Solid-State Sodium-Ion Batteries with First-Principles Calculations
journal, December 2017