skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lateral charge carrier transport properties of B-10 enriched hexagonal BN thick epilayers

Abstract

Neutron detectors based on B-10 enriched hexagonal boron nitride (h-10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors at about 58%. However, many fundamental transport parameters of h-BN, including the room temperature carrier mobility, minority carrier lifetime, and surface recombination velocity, which are essential to the performance of detectors, are still unknown. Here, we report here the carrier drift mobilities (μ) and lifetimes (τ) of both electrons and holes in h-10BN epilayers measured by using a time-of-flight (TOF) technique. Lateral photoconductive type detectors fabricated from a 65 μm thick freestanding h-10BN epilayer were utilized to carry out the TOF measurements, which revealed μe ~34 cm2/V s for electrons and μh ~36 cm2/V s for holes and carrier lifetimes on the order of tens of microseconds. By combining the values of μ measured from TOF with S/μ (the ratio of the surface recombination velocity to mobility) deduced directly from the bias voltage dependence of photocurrent, S for both electrons (Se ~1.4 × 104 cm/s) and holes (Sh ~2.7 × 103 cm/s) in h-10BN has been extracted. The determination of these important fundamental parameters (μ, τ, and S) not only provides a better understanding ofmore » the carrier dynamics and electrical transport properties of h-BN but is also valuable for further advancing the development of h-BN materials and devices.« less

Authors:
 [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Texas Tech Univ., Lubbock, TX (United States). Dept. of Electrical and Computer Engineering
Publication Date:
Research Org.:
Texas Tech Univ., Lubbock, TX (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1571782
Alternate Identifier(s):
OSTI ID: 1557337
Grant/Contract Number:  
AR0000964; NA0002927
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 115; Journal Issue: 7; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
15 GEOTHERMAL ENERGY; 36 MATERIALS SCIENCE; 61 RADIATION PROTECTION AND DOSIMETRY

Citation Formats

Grenadier, S., Maity, A., Li, J., Lin, J. Y., and Jiang, H. X. Lateral charge carrier transport properties of B-10 enriched hexagonal BN thick epilayers. United States: N. p., 2019. Web. doi:10.1063/1.5097984.
Grenadier, S., Maity, A., Li, J., Lin, J. Y., & Jiang, H. X. Lateral charge carrier transport properties of B-10 enriched hexagonal BN thick epilayers. United States. doi:10.1063/1.5097984.
Grenadier, S., Maity, A., Li, J., Lin, J. Y., and Jiang, H. X. Wed . "Lateral charge carrier transport properties of B-10 enriched hexagonal BN thick epilayers". United States. doi:10.1063/1.5097984. https://www.osti.gov/servlets/purl/1571782.
@article{osti_1571782,
title = {Lateral charge carrier transport properties of B-10 enriched hexagonal BN thick epilayers},
author = {Grenadier, S. and Maity, A. and Li, J. and Lin, J. Y. and Jiang, H. X.},
abstractNote = {Neutron detectors based on B-10 enriched hexagonal boron nitride (h-10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors at about 58%. However, many fundamental transport parameters of h-BN, including the room temperature carrier mobility, minority carrier lifetime, and surface recombination velocity, which are essential to the performance of detectors, are still unknown. Here, we report here the carrier drift mobilities (μ) and lifetimes (τ) of both electrons and holes in h-10BN epilayers measured by using a time-of-flight (TOF) technique. Lateral photoconductive type detectors fabricated from a 65 μm thick freestanding h-10BN epilayer were utilized to carry out the TOF measurements, which revealed μe ~34 cm2/V s for electrons and μh ~36 cm2/V s for holes and carrier lifetimes on the order of tens of microseconds. By combining the values of μ measured from TOF with S/μ (the ratio of the surface recombination velocity to mobility) deduced directly from the bias voltage dependence of photocurrent, S for both electrons (Se ~1.4 × 104 cm/s) and holes (Sh ~2.7 × 103 cm/s) in h-10BN has been extracted. The determination of these important fundamental parameters (μ, τ, and S) not only provides a better understanding of the carrier dynamics and electrical transport properties of h-BN but is also valuable for further advancing the development of h-BN materials and devices.},
doi = {10.1063/1.5097984},
journal = {Applied Physics Letters},
number = 7,
volume = 115,
place = {United States},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High-performance deep ultraviolet photodetectors based on few-layer hexagonal boron nitride
journal, January 2018

  • Liu, Heng; Meng, Junhua; Zhang, Xingwang
  • Nanoscale, Vol. 10, Issue 12
  • DOI: 10.1039/C7NR09438H

Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal
journal, May 2004

  • Watanabe, Kenji; Taniguchi, Takashi; Kanda, Hisao
  • Nature Materials, Vol. 3, Issue 6
  • DOI: 10.1038/nmat1134

Improved Time-of-Flight Technique for Measuring Carrier Mobility in Thin Films of Organic Electroluminescent Materials
journal, March 2000

  • Chen, Baijun; Lee, Chun-sing; Lee, Shuit-tong
  • Japanese Journal of Applied Physics, Vol. 39, Issue Part 1, No. 3A
  • DOI: 10.1143/JJAP.39.1190

Recent progress in CdTe and CdZnTe detectors
journal, January 2001

  • Takahashi, T.; Watanabe, S.
  • IEEE Transactions on Nuclear Science, Vol. 48, Issue 4
  • DOI: 10.1109/23.958705

Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure
journal, August 2007


Quantum emission from hexagonal boron nitride monolayers
journal, October 2015

  • Tran, Toan Trong; Bray, Kerem; Ford, Michael J.
  • Nature Nanotechnology, Vol. 11, Issue 1
  • DOI: 10.1038/nnano.2015.242

Van der Waals heterostructures
journal, July 2013

  • Geim, A. K.; Grigorieva, I. V.
  • Nature, Vol. 499, Issue 7459, p. 419-425
  • DOI: 10.1038/nature12385

Bright UV Single Photon Emission at Point Defects in h -BN
journal, June 2016


Hexagonal boron nitride neutron detectors with high detection efficiencies
journal, January 2018

  • Maity, A.; Grenadier, S. J.; Li, J.
  • Journal of Applied Physics, Vol. 123, Issue 4
  • DOI: 10.1063/1.5017979

High-field effects in photoconducting cadmium sulphide
journal, March 1965


Mobility lifetime product—A tool for correlating a ‐Si:H film properties and solar cell performances
journal, June 1996

  • Beck, N.; Wyrsch, N.; Hof, Ch.
  • Journal of Applied Physics, Vol. 79, Issue 12
  • DOI: 10.1063/1.362614

Long-range exciton dissociation in organic solar cells
journal, August 2012

  • Caruso, D.; Troisi, A.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 34
  • DOI: 10.1073/pnas.1206172109

Flexible metal-semiconductor-metal device prototype on wafer-scale thick boron nitride layers grown by MOVPE
journal, April 2017


Efficiency of composite boron nitride neutron detectors in comparison with helium-3 detectors
journal, March 2007

  • Uher, J.; Pospisil, S.; Linhart, V.
  • Applied Physics Letters, Vol. 90, Issue 12
  • DOI: 10.1063/1.2713869

Bandgap and exciton binding energies of hexagonal boron nitride probed by photocurrent excitation spectroscopy
journal, September 2016

  • Doan, T. C.; Li, J.; Lin, J. Y.
  • Applied Physics Letters, Vol. 109, Issue 12
  • DOI: 10.1063/1.4963128

Minority electron mobility in a p-n GaN photodetector
journal, January 2000


High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond
journal, September 2002

  • Isberg, Jan; Hammersberg, Johan; Johansson, Erik
  • Science, Vol. 297, Issue 5587, p. 1670-1672
  • DOI: 10.1126/science.1074374

Graphene based heterostructures
journal, August 2012


Review—Hexagonal Boron Nitride Epilayers: Growth, Optical Properties and Device Applications
journal, September 2016

  • Jiang, H. X.; Lin, J. Y.
  • ECS Journal of Solid State Science and Technology, Vol. 6, Issue 2
  • DOI: 10.1149/2.0031702jss

Characterization and Field Emission of Sulfur-Doped Boron Nitride Synthesized by Plasma-Assisted Chemical Vapor Deposition
journal, April 1997

  • Sugino, Takashi; Tanioka, Kazuhiko; Kawasaki, Seiji
  • Japanese Journal of Applied Physics, Vol. 36, Issue Part 2, No. 4B
  • DOI: 10.1143/JJAP.36.L463

AlN/h-BN Heterostructures for Mg Dopant-Free Deep Ultraviolet Photonics
journal, May 2017


Solid-state neutron detectors based on thickness scalable hexagonal boron nitride
journal, January 2017

  • Ahmed, K.; Dahal, R.; Weltz, A.
  • Applied Physics Letters, Vol. 110, Issue 2
  • DOI: 10.1063/1.4973927

Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures
journal, February 2012


Layer number dependent optical properties of multilayer hexagonal BN epilayers
journal, February 2017

  • Du, X. Z.; Uddin, M. R.; Li, J.
  • Applied Physics Letters, Vol. 110, Issue 9
  • DOI: 10.1063/1.4977425

Jahn-Teller effect on exciton states in hexagonal boron nitride single crystal
journal, May 2009


Huge Excitonic Effects in Layered Hexagonal Boron Nitride
journal, January 2006


Realization of highly efficient hexagonal boron nitride neutron detectors
journal, August 2016

  • Maity, A.; Doan, T. C.; Li, J.
  • Applied Physics Letters, Vol. 109, Issue 7
  • DOI: 10.1063/1.4960522

Phonon-Photon Mapping in a Color Center in Hexagonal Boron Nitride
journal, August 2016


Boron nitride substrates for high-quality graphene electronics
journal, August 2010

  • Dean, C. R.; Young, A. F.; Meric, I.
  • Nature Nanotechnology, Vol. 5, Issue 10, p. 722-726
  • DOI: 10.1038/nnano.2010.172

Light scattering study of boron nitride microcrystals
journal, June 1981

  • Nemanich, R. J.; Solin, S. A.; Martin, Richard M.
  • Physical Review B, Vol. 23, Issue 12, p. 6348-6356
  • DOI: 10.1103/PhysRevB.23.6348

Growth of hexagonal boron nitride on sapphire substrate by pulsed-mode metalorganic vapor phase epitaxy
journal, January 2018


Charge carrier transport properties in layer structured hexagonal boron nitride
journal, October 2014

  • Doan, T. C.; Li, J.; Lin, J. Y.
  • AIP Advances, Vol. 4, Issue 10
  • DOI: 10.1063/1.4898630

Dielectric strength, optical absorption, and deep ultraviolet detectors of hexagonal boron nitride epilayers
journal, October 2012

  • Li, J.; Majety, S.; Dahal, R.
  • Applied Physics Letters, Vol. 101, Issue 17
  • DOI: 10.1063/1.4764533

Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material
journal, May 2011

  • Dahal, R.; Li, J.; Majety, S.
  • Applied Physics Letters, Vol. 98, Issue 21
  • DOI: 10.1063/1.3593958

High sensitivity hexagonal boron nitride lateral neutron detectors
journal, June 2019

  • Maity, A.; Grenadier, S. J.; Li, J.
  • Applied Physics Letters, Vol. 114, Issue 22
  • DOI: 10.1063/1.5098331

Epitaxial growth and demonstration of hexagonal BN/AlGaN p-n junctions for deep ultraviolet photonics
journal, February 2012

  • Majety, S.; Li, J.; Cao, X. K.
  • Applied Physics Letters, Vol. 100, Issue 6
  • DOI: 10.1063/1.3682523

Nanoscale structure study of boron nitride nanosheets and development of a deep-UV photo-detector
journal, January 2014

  • Sajjad, Muhammad; Jadwisienczak, Wojciech M.; Feng, Peter
  • Nanoscale, Vol. 6, Issue 9
  • DOI: 10.1039/C3NR05817D

Excitons in Boron Nitride Nanotubes: Dimensionality Effects
journal, March 2006


Charge carrier mobility in poly(p-phenylenevinylene) studied by the time-of-flight technique
journal, November 1997

  • Lebedev, E.; Dittrich, Th.; Petrova-Koch, V.
  • Applied Physics Letters, Vol. 71, Issue 18
  • DOI: 10.1063/1.120179