skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Detonation synthesis of carbon nano-onions via liquid carbon condensation

Abstract

Transit through the carbon liquid phase has significant consequences for the subsequent formation of solid nanocarbon detonation products. We report dynamic measurements of liquid carbon condensation and solidification into nano-onions over ~200 ns by analysis of time-resolved, small-angle X-ray scattering data acquired during detonation of a hydrogen-free explosive, DNTF (3,4-bis(3-nitrofurazan-4-yl)furoxan). Further, thermochemical modeling predicts a direct liquid to solid graphite phase transition for DNTF products ~200 ns post-detonation. Solid detonation products were collected and characterized by high-resolution electron microscopy to confirm the abundance of carbon nano-onions with an average diameter of ~10 nm, matching the dynamic measurements. We analyze other carbon-rich explosives by similar methods to systematically explore different regions of the carbon phase diagram traversed during detonation. Our results suggest a potential pathway to the efficient production of carbon nano-onions, while offering insight into the phase transformation kinetics of liquid carbon under extreme pressures and temperatures.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [1];  [1];  [2];  [1]; ORCiD logo [1]; ORCiD logo [1];  [3];  [4];  [4];  [4];  [4]; ORCiD logo [4];  [4];  [4] more »; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Washington State Univ., Argonne, IL (United States)
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Washington State Univ., Pullman, WA (United States). Inst. for Shock Physics; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA), Office of Defense Programs (DP) (NA-10)
OSTI Identifier:
1571760
Alternate Identifier(s):
OSTI ID: 1574178
Report Number(s):
LLNL-JRNL-755497
Journal ID: ISSN 2041-1723
Grant/Contract Number:  
NA0002442; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 10; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
45 MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE; Materials science, Physics - Condensed matter physics, Nanoscience and Nanotechnology, Chemistry - Chemical explosives

Citation Formats

Bagge-Hansen, M., Bastea, S., Hammons, J. A., Nielsen, M. H., Lauderbach, L. M., Hodgin, R. L., Pagoria, P., May, C., Aloni, S., Jones, A., Shaw, W. L., Bukovsky, E. V., Sinclair, N., Gustavsen, R. L., Watkins, E. B., Jensen, B. J., Dattelbaum, D. M., Firestone, M. A., Huber, R. C., Ringstrand, B. S., Lee, J. R. I., van Buuren, T., Fried, L. E., and Willey, T. M. Detonation synthesis of carbon nano-onions via liquid carbon condensation. United States: N. p., 2019. Web. doi:10.1038/s41467-019-11666-z.
Bagge-Hansen, M., Bastea, S., Hammons, J. A., Nielsen, M. H., Lauderbach, L. M., Hodgin, R. L., Pagoria, P., May, C., Aloni, S., Jones, A., Shaw, W. L., Bukovsky, E. V., Sinclair, N., Gustavsen, R. L., Watkins, E. B., Jensen, B. J., Dattelbaum, D. M., Firestone, M. A., Huber, R. C., Ringstrand, B. S., Lee, J. R. I., van Buuren, T., Fried, L. E., & Willey, T. M. Detonation synthesis of carbon nano-onions via liquid carbon condensation. United States. doi:10.1038/s41467-019-11666-z.
Bagge-Hansen, M., Bastea, S., Hammons, J. A., Nielsen, M. H., Lauderbach, L. M., Hodgin, R. L., Pagoria, P., May, C., Aloni, S., Jones, A., Shaw, W. L., Bukovsky, E. V., Sinclair, N., Gustavsen, R. L., Watkins, E. B., Jensen, B. J., Dattelbaum, D. M., Firestone, M. A., Huber, R. C., Ringstrand, B. S., Lee, J. R. I., van Buuren, T., Fried, L. E., and Willey, T. M. Fri . "Detonation synthesis of carbon nano-onions via liquid carbon condensation". United States. doi:10.1038/s41467-019-11666-z. https://www.osti.gov/servlets/purl/1571760.
@article{osti_1571760,
title = {Detonation synthesis of carbon nano-onions via liquid carbon condensation},
author = {Bagge-Hansen, M. and Bastea, S. and Hammons, J. A. and Nielsen, M. H. and Lauderbach, L. M. and Hodgin, R. L. and Pagoria, P. and May, C. and Aloni, S. and Jones, A. and Shaw, W. L. and Bukovsky, E. V. and Sinclair, N. and Gustavsen, R. L. and Watkins, E. B. and Jensen, B. J. and Dattelbaum, D. M. and Firestone, M. A. and Huber, R. C. and Ringstrand, B. S. and Lee, J. R. I. and van Buuren, T. and Fried, L. E. and Willey, T. M.},
abstractNote = {Transit through the carbon liquid phase has significant consequences for the subsequent formation of solid nanocarbon detonation products. We report dynamic measurements of liquid carbon condensation and solidification into nano-onions over ~200 ns by analysis of time-resolved, small-angle X-ray scattering data acquired during detonation of a hydrogen-free explosive, DNTF (3,4-bis(3-nitrofurazan-4-yl)furoxan). Further, thermochemical modeling predicts a direct liquid to solid graphite phase transition for DNTF products ~200 ns post-detonation. Solid detonation products were collected and characterized by high-resolution electron microscopy to confirm the abundance of carbon nano-onions with an average diameter of ~10 nm, matching the dynamic measurements. We analyze other carbon-rich explosives by similar methods to systematically explore different regions of the carbon phase diagram traversed during detonation. Our results suggest a potential pathway to the efficient production of carbon nano-onions, while offering insight into the phase transformation kinetics of liquid carbon under extreme pressures and temperatures.},
doi = {10.1038/s41467-019-11666-z},
journal = {Nature Communications},
number = 1,
volume = 10,
place = {United States},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Dispensing and surface-induced crystallization of zeptolitre liquid metal-alloy drops
journal, April 2007

  • Sutter, Peter W.; Sutter, Eli A.
  • Nature Materials, Vol. 6, Issue 5
  • DOI: 10.1038/nmat1894

Experimental evidences for molecular origin of low- Q peak in neutron/x-ray scattering of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ionic liquids
journal, December 2011

  • Fujii, Kenta; Kanzaki, Ryo; Takamuku, Toshiyuki
  • The Journal of Chemical Physics, Vol. 135, Issue 24
  • DOI: 10.1063/1.3672097

Nika : software for two-dimensional data reduction
journal, March 2012


Nanocarbon condensation in detonation
journal, February 2017


Formation of diamond from the liquid phase of carbon
journal, July 1993

  • Mal'kov, I. Yu.; Filatov, L. I.; Titov, V. M.
  • Combustion, Explosion, and Shock Waves, Vol. 29, Issue 4
  • DOI: 10.1007/BF00782983

Measurement of carbon condensates using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene
journal, June 2015

  • Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.
  • Journal of Applied Physics, Vol. 117, Issue 24
  • DOI: 10.1063/1.4922866

Explicit Gibbs free energy equation of state applied to the carbon phase diagram
journal, April 2000


Understanding ultrafine nanodiamond formation using nanostructured explosives
journal, July 2013

  • Pichot, Vincent; Risse, Benedikt; Schnell, Fabien
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02159

Diamonds in detonation soot
journal, June 1988

  • Greiner, N. Roy; Phillips, D. S.; Johnson, J. D.
  • Nature, Vol. 333, Issue 6172
  • DOI: 10.1038/333440a0

Phase transformations of nanometer size carbon particles in shocked hydrocarbons and explosives
journal, August 2001

  • Viecelli, J. A.; Bastea, S.; Glosli, J. N.
  • The Journal of Chemical Physics, Vol. 115, Issue 6
  • DOI: 10.1063/1.1386418

Novel synthesis and properties of hydrogen-free detonation nanodiamond
journal, September 2018


On the history of the discovery of nanodiamond synthesis
journal, April 2004

  • Danilenko, V. V.
  • Physics of the Solid State, Vol. 46, Issue 4
  • DOI: 10.1134/1.1711431

Real-Time Examination of Atomistic Mechanisms during Shock-Induced Structural Transformation in Silicon
journal, July 2016


Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon
journal, August 2010

  • Pech, David; Brunet, Magali; Durou, Hugo
  • Nature Nanotechnology, Vol. 5, Issue 9, p. 651-654
  • DOI: 10.1038/nnano.2010.162

New developments of the CARTE thermochemical code: A two-phase equation of state for nanocarbons
journal, January 2016

  • Dubois, Vincent; Pineau, Nicolas
  • Journal of Applied Physics, Vol. 119, Issue 1
  • DOI: 10.1063/1.4938528

Catalytic behaviour of dense hot water
journal, March 2009

  • Wu, Christine J.; Fried, Laurence E.; Yang, Lin H.
  • Nature Chemistry, Vol. 1, Issue 1
  • DOI: 10.1038/nchem.130

The pressure-temperature phase and transformation diagram for carbon; updated through 1994
journal, January 1996


Thermal and Combustion Properties of 3,4-Bis(3-nitrofurazan-4-yl)furoxan (DNTF)
journal, June 2012

  • Sinditskii, Valery P.; Burzhava, Anna V.; Sheremetev, Aleksey B.
  • Propellants, Explosives, Pyrotechnics, Vol. 37, Issue 5
  • DOI: 10.1002/prep.201100095

Diamond nanoparticles to carbon onions transformation: X-ray diffraction studies
journal, August 2002


Single-bunch imaging of detonation fronts using scattered synchrotron radiation
journal, June 2018

  • Nielsen, Michael H.; Hammons, Joshua A.; Bagge-Hansen, Michael
  • Journal of Applied Physics, Vol. 123, Issue 22
  • DOI: 10.1063/1.5029912

Review: carbon onions for electrochemical energy storage
journal, January 2016

  • Zeiger, Marco; Jäckel, Nicolas; Mochalin, Vadym N.
  • Journal of Materials Chemistry A, Vol. 4, Issue 9
  • DOI: 10.1039/C5TA08295A

On the structure of concentrated detonation nanodiamond hydrosols with a positive ζ potential: Analysis of small-angle neutron scattering
journal, August 2016


Irena : tool suite for modeling and analysis of small-angle scattering
journal, February 2009


The gram-scale synthesis of carbon onions
journal, March 2012


The properties and applications of nanodiamonds
journal, December 2011

  • Mochalin, Vadym N.; Shenderova, Olga; Ho, Dean
  • Nature Nanotechnology, Vol. 7, Issue 1
  • DOI: 10.1038/nnano.2011.209

The structure of diamond nanoclusters
journal, April 1999

  • Aleksenskii, A. E.; Baidakova, M. V.; Vul’, A. Ya.
  • Physics of the Solid State, Vol. 41, Issue 4
  • DOI: 10.1134/1.1130846

Post-modification by low-temperature annealing of carbon nano-onions in the presence of carbohydrates
journal, February 2014


Real-time, high-resolution x-ray diffraction measurements on shocked crystals at a synchrotron facility
journal, December 2012

  • Gupta, Y. M.; Turneaure, Stefan J.; Perkins, K.
  • Review of Scientific Instruments, Vol. 83, Issue 12
  • DOI: 10.1063/1.4772577

X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers
journal, June 2016

  • Willey, T. M.; Champley, K.; Hodgin, R.
  • Journal of Applied Physics, Vol. 119, Issue 23
  • DOI: 10.1063/1.4953681

Bonding in Liquid Carbon Studied by Time-Resolved X-Ray Absorption Spectroscopy
journal, February 2005


Evolution of Carbon Clusters in the Detonation Products of the Triaminotrinitrobenzene (TATB)-Based Explosive PBX 9502
journal, October 2017

  • Watkins, Erik B.; Velizhanin, Kirill A.; Dattelbaum, Dana M.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 41
  • DOI: 10.1021/acs.jpcc.7b05637